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Abstract

In this thesis, I will introduce several methods to extract cosmological information

from observations of the sky, ranging from the cosmic microwave background (CMB) to

hydrogen line intensity mapping. Starting with the first light, the CMB, a cosmological

Boltzmann code is presented to calculate the CMB power spectra from different theoretical

models, for a flat (Ωk = 0) cosmology. It can rapidly compute the CMB power

spectrum accurately up to high multipoles. After reviewing the chronological evolution

of the Universe, I will then introduce the basic ideas of intensity mapping of neutral

hydrogen after recombination, which tells us about structure formation. I will present

the first results from the Tianlai Dish interferometer array, which is a new instrument

specifically designed and constructed for hydrogen intensity mapping between redshift

z = 0 and z = 2.55. The array is still in its infancy, and a thorough understanding

of the instrument through simulation, calibration, noise analysis is described. An

eigen-decomposition method to remove the Sun signal from the timestream data of

radio interferometers is discussed in detail. It is applied to Tianlai data, which helps

the instrument collect usable data during the daytime. Finally, a machine learning

method is presented that maximizes the cross-correlation between hydrogen intensity

maps and galaxy redshift surveys as a tool for detecting the hydrogen signal in the

presence of bright foregrounds.
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Chapter 1

Introduction

1.0.1 History of Modern Cosmology

Cosmology is the scientific study of the origin and development of the Universe.

Although it has been studied for thousands of years, modern cosmology only began

with Albert Einstein’s publication of his theory of general relativity. After that, several

renowned cosmologists such as de Sitter, Schwarzschild, and Eddington contributed

important ideas on the curvature of the Universe, the nature of spacetime, and the

first confirmation of general relavity. Alexander Friedmann later introduced the idea

of an expanding Universe that contained moving matter, in contrast to the static

eternal Universe as was widely believed at the time. A few years later, in 1926, Hubble

confirmed that the Universe was indeed expanding by showing that galaxies seemed to

be receding at a rate proportional to their distance.

Our current understanding is that the Universe started with the Big Bang, where

space-time and everything within it begin, followed by a rapid accelerating expansion

called inflation during the first 10−32 second. During this period, quantum fluctuations

formed, which later became the seeds for large scale structure in the Universe. A
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Figure 1.1: A history of the Universe

summary of the evolution of the Universe is shown in Figure 1.1. As the Universe

expanded from about 0.01 seconds to 3 minutes after the Big Bang, the temperature

cooled to below 109 K (0.1 MeV), during which the production of nuclei other than

hydrogen began. This is known as Big Bang nucleosynthesis. Most of the Universe’s

helium (4He), together with a small amount of helium-2 (2He) and helium-3 (3He),

and even smaller amounts of lithium (7Li), were produced during this phase. However,

photons still remained tightly coupled to electrons via Compton scattering. Below 104

K (0.1 eV), free electrons could then couple with protons to form hydrogen atoms.

This era is called recombination. At 380,000 years after the Big Bang, the coupling

between photons and baryons becomes weak enough at the last scattering surface that

photons could travel unimpeded through the Universe. The hot thermal photons from

the last scattering surface are still traveling to us now, and these photons are called the

Cosmic Microwave Background (CMB) because they are redshifted to the microwave

range. The details of this process will be discussed further in the next chapter.
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Because there are no luminous objects after the CMB, the Universe enters an epoch

called the Dark Ages. At around 200 million years, the first generation of luminous

objects starts to form inside dark matter halos. Collapsed dark matter makes dark

matter halos in over-dense regions. This is the structure formation era, beginning

at the Cosmic Dawn. Inside dark matter halos, baryonic matter gathers to form

primordial stars from the metal-poor gas. Larger luminous objects such as X-ray

binaries, galaxies, supernovas, quasars also start to form and illuminate the Universe.

As more structures are formed, ionizing photons produced by stars and galaxies start

to ionize the neutral hydrogen cloud. This epoch is called the Epoch of Reionization

(EoR). Those illuminating objects affect the thermal and ionization history of the

intergalacic medium (IGM). The temperature of the IGM first decreases adiabatically

as the Universe expands, but X-ray photons heat the IGM significantly afterward.

Details of the exact redshifts of the Dark Ages and EoR are still ongoing subjects of

investigation. After the EoR, the Universe experiences accelerated expansion due to

dark energy. In addition, galaxies are not distributed in a random manner but form

the Large Scale Structure (LSS).

Within the last 50 years, cosmologists have made important contributions to the

understanding of our Universe, thanks to the rapid development of state-of-the-art

instruments. Models for nucleosynthesis are constrained by measurements of the

primordial metallicity abundance using absorption lines in hot and ionized regions

of galaxies and distant quasars. The Big Bang picture was further confirmed by the

discovery and measurements of the CMB. The COsmic Background Explorer (COBE)

discovered anisotropies in the CMB temperature field (fractional variation δT/T ≈

10−5) and determined the blackbody temperature of the CMB to be 2.725 ± 0.001

K. Later, the WMAP and Planck satellites measured the anisotropies of the CMB
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at higher angular resolution. Progress was also made in characterizing the Large

Scale Structure with 3D galaxy surveys, primarily using optical telescopes. Intensity

mapping, measuring the 3D Large Scale Structure with emission lines, is one of the

latest newcomers to observational cosmology and is actively being developed.

The original Big Bang model had several fundamental shortcomings, known as

the horizon, flatness, and monopole problems. These were solved by the concept

of inflation, in which the early Universe underwent a brief, rapid expansion from a

singularity, a point of infinite density and gravity. The current ‘standard model’ of

cosmology, called the ΛCDM model, posits an inflationary beginning to a Universe

now dominated by a cosmological constant (Λ), or dark energy, and cold dark matter

(CDM). It offers remarkably good explanations for a wide range of observed phenomena,

including the cosmic microwave background (CMB) radiation, the abundance of light

elements, and large-scale structure, which formed from the quantum fluctuations that

were magnified during inflation. We need a large amount of observational data to fit

all the parameters in the inflationary ΛCDM model. In addition, how the Hubble

rate, which describes the rate of expansion of the Universe, varies with redshift is an

open question. The expansion rate of the Universe is decelerated by regular matter

but is accelerated by dark energy. Fortunately, these questions can be answered by

studying the fluctuations in the CMB temperature and the distribution of matter in

the Universe. In addition, there is another challenge: local measurements of the Hubble

parameter from supernovae and lensing time delays disagree with the value inferred

from a ΛCDM fit to the CMB, with local measurements indicating higher values. This

disagreement does not come from known systematic effects in either measurement and

is called the Hubble tension. This may imply new physics beyond the standard ΛCDM

paradigm. In this thesis, I will introduce a tool for CMB analysis, named CMBAns,
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and show how it can be used to set constraints on the ΛCDM model parameters.

In CMBAns, the Hubble parameter can be visually modified as a function of redshift

through a MATLAB GUI, then the program will output the CMB power spectrum

of the corresponding model. Later, I will introduce intensity mapping using radio

interferometric observations of neutral hydrogen, a new technique for mapping the

large scale structure of the Universe.

1.0.2 From the CMB to Intensity Mapping

The CMB is the Universe’s first light, which was released about 380,000 years

after the Big Bang. The CMB thus offers a remarkable view of the Universe right

after recombination, when charged electrons and protons first became bound to form

electrically neutral hydrogen atoms. The CMB angular power spectrum can tell us

about the geometric properties of the Universe, inflation, and the composition of

the Universe including baryonic matter, dark matter, and dark energy, because it

is highly sensitive to the ΛCDM model’s cosmological parameters. However, the

CMB, being only a 2-dimensional map of the Universe, does not directly observe

structures formed after recombination. There are also secondary anisotropies, such

as gravitational lensing and the (S-Z) effect, that arise from processes along the line

of sight. However, the secondary anisotropies are integrated along the line of sight,

so the redshift dependence is mostly washed out. This inspires us to turn to intensity

mapping as a way to learn about structure formation (galaxies, galaxy clusters and

larger structures). By mapping the 21 cm emission line due to the hyperfine structure

of neutral hydrogen in 3-dimensions, we can probe the Universe from the dark ages, to

reionization, all the way to the present day. Although the ΛCDM model is very good

at predicting the very large-scale distribution of cosmological objects, on the scale of
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galaxy clusters or individual galaxies, nonlinear processes including baryonic physics,

gas heating and cooling, star formation, etc. can complicate the prediction. Intensity

mapping can augment the ΛCDM model in such cases. It can be used to determine

the power spectrum of matter fluctuations. Both the CMB and intensity mapping

will complement each other to provide further insights into our understanding of the

Universe.

1.0.3 Outline of this thesis

This thesis is organized as follows. In Chapter 2, I will briefly review our understanding

of the history of the Universe. We start with the Hubble Law and use the Friedmann

equation to summarize the evolution of the scale factor with time. We then present

the basic ideas on the CMB and its angular power spectrum.

In Chapter 3, we will introduce a new cosmological Boltzmann code, CMBAns, for

calculating the CMB angular power spectra and estimating cosmological parameters.

It is based on a paper I wrote with Santanu Das: "Cosmic Microwave Background

Anisotropy numerical solution (CMBAns) I: An introduction to Cℓ calculation" published

in JCAP in May, 2020 [39]. We will present the capabilities of CMBAns for calculating

the unlensed CMB scalar/tensor angular power spectra from standard cosmological

parameters such as baryon or dark matter density, reionization optical depth, Hubble

parameter, and so on.

Chapter 4 presents the fundamental physics of neutral hydrogen 21 cm emission,

a promising probe to study reionization and structure formation after the CMB was

emitted. We introduce different astrophysical processes that affect the 21 cm line and

its observation. Our main results are presented in Chapter 5 and 6. In Chapter 5,

we introduce the concept of intensity mapping and the radio interferometric technique
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used by most 21 cm intensity mapping instruments. I describe one such instrument in

detail: the Tianlai Pathfinder Array. The array is in an experimental stage, and we

discuss the array performance and calibration. I will present my work in a paper with

the Tianlai collaboration named "The Tianlai Dish Pathfinder Array: design, operation

and performance of a prototype transit radio interferometer" that appeared in MNRAS

in 2021 [135].

Chapter 6 will deal with removing the solar contamination from radio interferometer

data. Sun contamination generally makes daytime data unusable for any analysis.

We introduced an eigenvalue - based technique to remove up to 95% of the solar

contamination without affecting weaker sources in the sky. Most of the work in this

chapter is based on a paper on which I am first author: "AlgoSCR: An algorithm

for Solar Contamination Removal from radio interferometric data," that appeared in

MNRAS in 2022. [109]

Chapter 7 presents a 21 cm foreground removal technique using machine learning

(ML). Foreground signals are much brighter than the HI signal and in general very

difficult to remove. Historically, blind techniques such as Principle Component Analysis

(PCA) are used. However, Makinen [87] proposed a way to combine traditional PCA

with machine learning to improve the foreground removal efficacy. In this chapter, we

further refine the results by introducing cross-correlation with galaxy surveys. We will

give preliminary results with potential for further expansion and optimization on a

larger data set. Finally, Chapter 8 provides the conclusion and discusses future CMB

and HI experiments.
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Chapter 2

The Cosmic Microwave Background

Chapter 2 is a general introduction to modern cosmology, with emphasis on

the Cosmic Microwave Background (CMB) and its polarization. This chapter is

intended to give a foundation for the following chapters. We briefly describe the

homogeneous Universe and the evolution of its components. We then describe

how small inhomogeneities seeded by inflation in the early Universe imprint small

anisotropies in the CMB. We show how the observed CMB power spectrum can

test the ΛCDM model and constrain cosmological parameters.

2.1 Introduction to Cosmology

Modern cosmology starts with the cosmological principle, which states that on large

enough scales (larger than about 300 Mpc), the Universe possesses two important

properties:

• The Universe is homogeneous. Homogeneity means translational invariance; the

Universe looks the same at each observational point.
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• The Universe is isotropic. Isotropy means rotational invariance; the Universe

looks the same in all directions.

Homogeneity and isotropy are symmetries of space, not spacetime. Spacetime can still

be curved even if its spatial part is flat.

2.1.1 Hubble’s law

In 1929, Edwin Hubble published a paper titled “A relation between distance and

radial velocity among extra-galactic nebulae” [65]. The paper showed that the distant

galaxies in all directions are receding at a rate that is proportional to their distance

from the Earth. This does not imply that the Earth is the center of the Universe.

An observer at any location in the Universe would observe that distant galaxies recede

away from them. It is a consequence of the fact that space itself is expanding. Hubble’s

law is regarded as the first observational evidence for the expansion of the Universe.

Note that the Universe would not be isotropic if every point saw a recessional velocity

larger in the x direction than in the y direction, for example, but our Universe does not

have any measurable velocity anisotropy. Because of this simplicity, the law is often

expressed as

v = H(t)d (2.1)

where v is the recessional velocity, conventionally expressed in km/s, H(t) is the Hubble

parameter, i.e. the instantaneous relative rate of expansion of the Universe at time t,

which has units km/s/Mpc. Its present value is called the Hubble constant, H0. d is

the proper distance in parsec (which can vary with time, unlike comoving distance,

which is static). A plot of Hubble’s original finding of the linear relationship between

recessional velocity and proper distance is shown in Fig. 2.1.
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Figure 2.1: Velocity versus time graph for various nebulae outside the Milky Way
galaxy. Figure from 1929 paper by Edwin Hubble [65].

2.1.2 General relativity

In 1915, fourteen years before Hubble’s finding, Albert Einstein published the first

geometric theory of gravitation, called general relativity, which formed another basis

for modern cosmology. The theory generalizes special relativity and Newton’s law

of universal gravitation. It relates the curvature of spacetime to the energy and

momentum of matter or radiation present. In general relativity, the fundamental

quantity is the metric, which describes the geometry of spacetime by giving the separation

distance between neighboring points. In four-dimensional spacetime, the infinitesimal

separation is

ds2 = gµνdxµdxν , (2.2)
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where gµν is the metric, µ and ν are indices taking the values 0, 1, 2 and 3, x0 is the

time coordinate and x1, x2 and x3 are the three spatial coordinates. The Einstein

summation notation is assumed. The metric evolves in accordance with the Einstein

field equation:

Rµν −
1
2Rgµν + Λgµν = 8πG

c4 Tµν , (2.3)

where Rµν is the Ricci curvature tensor, R is the Ricci scalar curvature, gµν is the

metric tensor, Λ is the cosmological constant, G is Newton’s gravitational constant, c

is the speed of light in vacuum, and Tµν is the energy-momentum tensor.

The energy-momentum tensor can be written as

Tµν = (ρ+ p)uµuν − pgµν , (2.4)

where ρ is the total energy density, p is the pressure, and u is the four-velocity.

Conservation of energy requires that the covariant derivative of the energy-momentum

tensor must vanish:

∇µT
µν = 0. (2.5)

2.1.3 Friedmann-Lemaître-Robertson-Walker (FLRW) metric

In 1922, Russian physicist Alexander Friedmann attempted to solve the most general

case of general relativity, based on the cosmological principle that, at any given time,

the Universe should not have any preferred location. This requires that the spatial

part of the metric have a constant curvature. With this assumption, Friedmann was

able to find the exact solution to the Einstein field equation (the solution is known

as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric; it is the most general

metric which has constant spatial curvature). The solution also describes an expanding
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Figure 2.2: Comoving coordinate grid, expanding corresponding to increasing
cosmic time. Image taken from https://ned.ipac.caltech.edu/level5/March02/
Bertschinger/Figures/figure1.jpg

Universe, in agreement with Hubble’s finding. We will take a brief look at the derivation

of the FLRW metric, but first the idea of comoving coordinates is introduced.

The fact that the Universe is homogeneous and expands uniformly allows us to

change to a different coordinate system, known as the comoving coordinates. They

expand and contract with the evolution of the Universe, as shown in Figure 2.2. The

comoving coordinates (X, Y, Z) are related to the physical coordinates (x, y, z) by

X = a(t)x

Y = a(t)y

Z = a(t)z.

(2.6)

The distance between two points in the Universe is thus given by D =
√
X2 + Y 2 + Z2,

and if d =
√
x2 + y2 + z2 is the proper distance between those two points at the present

time, we can write d = a(t)D. Normally, at present time t0, a(t0) is set to equal 1, for

simplicity.

https://ned.ipac.caltech.edu/level5/March02/Bertschinger/Figures/figure1.jpg
https://ned.ipac.caltech.edu/level5/March02/Bertschinger/Figures/figure1.jpg
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We can write the metric in (2.2) as

ds2 = c2dt2 − dl2, (2.7)

where

dl2 = gijdxidxj. (2.8)

The FLRW metric has the form:

ds2 = −c2dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]

= −c2dt2 + a2(t)
[

dr2

1− kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
,

(2.9)

where k is a constant representing the curvature of space.

2.1.4 Geometry of the Universe

Notice that the following substitution

k → k

|k|
, r →

√
|k|r, a(t)→ a(t)√

|k|
(2.10)

leaves (2.9) invariant, in cases where k is nonzero. Therefore, the only relevant parameter

is k/|k|, and we can rescale (2.9) so that k takes on only the following values:

1. k = −1, negative curvature. This describes an open Universe.

2. k = 0, zero curvature. The spatial part of the Universe is flat.

3. k = +1, positive curvature. This describes a closed Universe.
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The line (spatial) element of the FLRW metric is found by setting dt = 0 in (2.9):

dl2 = a2(t)
[

dr2

1− kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
(2.11)

• First, consider k = 0, defining

r = χ. (2.12)

This may seem redundant, but it generalizes to the case of k = ±1. The line element

of the hypersurface at any moment t0 is

dl2 = a2(t0)
[
dχ2 + χ2

(
dθ2 + sin2 θdϕ2

)]
= a2(t0)

(
dx2 + dy2 + dz2

)
= a2(t0)δijdxidxj,

(2.13)

which is simply flat Euclidean space with an added scale factor. Although the 3D

spatial surface has Euclidean geometry, the 4D spacetime hypersurface is still curved.

The co-moving distance can still change due to the changing scale factor, hence the

Riemann curvature tensor is not necessarily zero. The metric is clearly invariant under

spatial translation xi → xi + ai, with ai being any arbitrary constant, and under

rotation xi → Ri
kx

k, with δijR
i
kR

j
l = δkl.

• For k = 1, we can define a new coordinate χ (r) such that

dχ2 = dr2

1− r2 (2.14)

and χ(0) = 0. After integrating both sides, we get



15

r = sinχ. (2.15)

The line element (2.11) for the space at t = t0 is

dl2 = a2(t0)
[
dχ2 + sin2 ξ

(
dθ2 + sin2 θdϕ2

)]
. (2.16)

This is the metric for the three-sphere of radius a(t0), i.e. the set of points equidistant

a(t0) from a fixed central point in 4-dimensional Euclidean space. Recall that a three-

dimensional surface in four-dimensional Euclidean space is given by the Cartesian

representation x2+y2+z2+w2 = a2(t0), where a(t0) is the radius of the sphere. The line

element in (2.16) can be found by parametrizing x1 = a(t0) cosχ, y = a(t0) sinχ cos θ,

z = a(t0) sinχ sin θ cosϕ, w = a(t0) sinχ sin θ sinϕ and then calculating the Jacobian.

Note that the curvature of the three-sphere is an intrinsic property and there is no need

of a higher dimensional space for it to live in. This model describes a closed, spherical

Universe, directly analogous to the surface of a sphere.

• Finally, for k = −1, define a new coordinate χ(r) such that

dχ2 = dr2

1 + r2 (2.17)

and χ(0) = 0. Integrating both sides leads to the result

r = sinhχ. (2.18)

The line element (2.11) for the space at t = t0 is

dl2 = a2(t0)
[
dχ2 + sinh2 χ

(
dθ2 + sin2 θdϕ2

)]
. (2.19)
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We see that in each case, the line (spatial) element of the FLRW metric is the same

at any one point in space (homogeneous) and spherically symmetric about that point

(isotropic). There is neither a special point nor a special direction.

2.1.5 Conformal Time

We need to find an interchangeable relationship between time and distance. We will

need to define a new quantity, called the conformal time η, so that the ratio between

the proper time t and conformal time η is the same as the ratio between proper distance

d and comoving distance χ - namely the scale factor a. We define the conformal time

at a certain time t as

η(t) =
∫ t

0

dt′
a(t′) , (2.20)

where we have taken the Big Bang to be at t = 0. By convention, η0 = η(t0) =

1.48× 1018 s is the conformal time today, which is the radius of the current observable

Universe with diameter of 93 billion light years. With

η − ηi =
∫ t

ti

dt′

a (t′) , (2.21)

c (η − ηi) represents the comoving distance travelled by a photon between the time ηi

and η, or ti and t. The conformal time allows us to rewrite the metric in 2.9 as

ds2 = a2(η)
[
−c2dη2 + dr2

1− kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
(2.22)

so that the scale factor becomes a conformal factor. If a has dimensions then cη is

dimensionless, and if a is dimensionless, then η is time.
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2.1.6 The Friedmann Equations

Having the FLRW metric, our next natural step is to plug it into Einstein’s field

equation to derive the Friedmann equations relating the scale factor a(t0) to the energy-

momentum of the Universe. Since the Universe is not empty, we are not interested in

the vacuum solutions to Einstein’s field equation. We will model the matter and energy

in the Universe as a perfect fluid, which is a fluid that is completely characterized by

its rest frame energy density ρ and isotropic pressure p. It has no heat conduction

(T 0i = T i0 = 0) and no viscosity (T ij = 0 if i ̸= j). The energy-momentum tensor for

a perfect fluid, in units where c = 1, can be written

Tµν = (ρ+ p)UµUν + pgµν , (2.23)

where Uµ = (1, 0, 0, 0) is the four-velocity of the fluid. The four-velocity of the fluid at

rest in the comoving frame is

Uµ = (1, 0, 0, 0). (2.24)

The energy-momentum tensor in (2.23) becomes

T µν =



ρ 0 0 0

0

0 gijp

0


. (2.25)

Conservation of energy requires that the covariant derivative of the energy-momentum

tensor must vanish

∇µT
µν = 0. (2.26)
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First, we consider the zero component of (2.26)

0 = ∇µT
µ

0

= ∂µT
µ

0 + ΓµµλT λ0 − Γλµ0T
λ

0

= −∂0ρ− 3 ȧ
a

(ρ+ p). (2.27)

Here, the time dependence of a, ρ, p is implicit. The relationship between ρ and p is

described by the equation of state1

p = wρ, (2.28)

where w is a constant independent of time. The equation of state (2.27) becomes

ρ̇

ρ
= −3(1 + w) ȧ

a
. (2.29)

After integration, with w constant,

ρ ∝ a−3(1+w). (2.30)

Two important examples of cosmological fluids are matter and radiation. Matter,

also known as dust, is any set of collisionless, non-relativistic particles, which has

positive mass density but vanishing pressure and has w = 0. Matter includes dark

matter and baryonic matter. The energy density in matter, denoted as ρm, falls off as

ρm ∝ a−3. (2.31)
1For a more detailed derivation, see Appendix ??.



19

For matter the energy density is dominated by the rest energy, which is proportional

to the number density. Therefore, the number density decreases proportional to a−3 as

the Universe expands. Furthermore, for radiation w = 1/3 and thus the energy density

for radiation, denoted as ρr, falls off as

ρr ∝ a−4. (2.32)

The energy density for radiation falls off faster than that for matter. The reason is

that, in addition to the fact that the number density of photons decreases in the same

manner as the number density of dust particles, and the energy of individual photons

decreases ∝ a−1 as they redshift in an expanding Universe. In the early Universe,

the matter energy density is dominated by the radiation energy density. In contrast,

today the radiation energy density is dominated by the matter energy denstity, with

ρr/ρm ∼ 10−3.

In addition, vacuum energy (dark energy) can also be modeled as a perfect fluid

with w = −1 and equation of state pΛ = −ρΛ. Note that dark energy has a negative

pressure. The vacuum energy density is constant,

ρΛ ∝ a0. (2.33)

If the vacuum energy is nonzero, it will dominate over matter and radiation energy over

the long term because the vacuum energy density does not decrease as the Universe

expands. If this happens, the Universe becomes vacuum-dominated.

To derive the Friedmann equation, let’s go back to the Einstein equation (2.3) with

c = 1. The µν = 00 equation is
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R00 −
1
2Rg00 + Λg00 = 8πGT00

−→ −3 ä
a

+ 3
[
ä

a
+
(
ȧ

a

)2
+ k

a2

]
− Λ = 8πGρ.

Simplifying this equation, we get the first Friedmann equation:

(
ȧ

a

)2
= 8πG

3 ρ− k

a2 + Λ
3 . (2.34)

Similarly, the spatial part µν = ij gives

2 ä
a

+
(
ȧ

a

)2
= −8πGp− k

a2 + Λ (2.35)

Subtracting (2.34) from (2.35) and dividing by 2, we obtain the second Friedmann

equation (acceleration equation):

ä

a
= −4πG

3 (ρ+ 3p) + Λ
3 . (2.36)

The cosmological constant Λ is shown here for historical reasons. In some physics

literature, the vacuum energy density is absorbed into the total energy density term,

where Λ = 8πGρΛ = −8πGpΛ, so the total energy density in this case is ρ = ρm+ρr+ρΛ.

The Friedmann equations are

(
ȧ

a

)2
= 8πG

3 ρ− k

a2 (2.37)

ä

a
= −4πG

3 (ρ+ 3p). (2.38)
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We can see that if the negative pressure associated with the cosmological constant

is large enough, the right side of (2.38) is positive, and the Universe expansion is

accelerating. This is indeed the case with the current observable Universe. The

expansion rate is characterized by the Hubble parameter, introduced in (2.1):

H(t) = ȧ(t)
a(t) . (2.39)

Its present value (the Hubble constant, H0) is H0 = ȧ(t0)/a(t0) = ȧ(t0)/1 = 67 ± 10

(km/s)/Mpc. The reduced Hubble constant, h, is a dimensionless quantity defined as

h ≡ H0/100.

As a simple example, the de Sitter model assumes a homogeneous, isotropic Universe

with zero curvature (k = 0), zero cosmological constant (Λ = 0) and zero pressure

(p = 0). The energy density for this spatially flat Universe is called the critical density

ρc, and the first Friedmann equation (2.34) is

H(t)2 =
(
ȧ

a

)2
= 8πG

3 ρc. (2.40)

We can solve for the critical density, ρc, as a function of time2

ρc = 3H2
0

8πG (2.41)

2Even though ρc is a function of time, it is common to define ρc as a constant, the critical density
as of today: ρc = 3H2/8πG.



22

The density parameter is defined as the ratio of the actual total density, ρ, in our

observable Universe to the critical density, ρc

Ω = 8πG
3H(t)2ρ = ρ

ρc
. (2.42)

The density parameter for matter (dark plus baryonic) Ωm, radiation Ωr, and vacuum

ΩΛ are defined similarly

Ωm = ρm
ρc
, Ωr = ρr

ρc
, ΩΛ = ρΛ

ρc
, (2.43)

so that Ω = Ωm + Ωr + ΩΛ. In addition, the first Friedmann equation 2.37 can be

written as

Ω− 1 = k

H(t)2a2 (2.44)

The density parameter associated with curvature Ωk is defined as

Ωk = − k

H(t)2a2 , (2.45)

so that

Ω + Ωk = 1 ⇔ Ωm + Ωr + ΩΛ + Ωk = 1. (2.46)

The sign of Ωk determines whether Ω is greater than, equal to, or less than unity,

which corresponds to a closed, flat, and open Universe respectively, as shown in ??.

The density parameter at the current time is denoted as Ω0.
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Figure 2.3: Ω0 > 1 corresponds to a closed Universe, Ω0 = 0 corresponds to a flat
Universe, and Ω0 < 1 corresponds to an open Universe.

We can rewrite the Friedmann equation (2.37) in terms of the current values of the

density parameters, noting that ρi/ρ0,i = (a(t)/a(t0))−3(1+wi) = a(t)−3(1+wi):

H(t)2 =
(
ȧ

a

)2
= 8πG

3 (ρm + ρr + ρΛ)− k

a2

= 8πG
3

(
ρ0,ma

−3 + ρ0,ra
−4 + ρ0,Λa

0
)
− k

a2

= H2
0 (Ω0,ma

−3 + Ω0,ra
−4 + Ω0,Λa

0 + Ω0,ka
−2)

=⇒ H(t)2

H2
0

= Ω0,ma
−3 + Ω0,ra

−4 + Ω0,Λa
0 + Ω0,ka

−2. (2.47)

Current data from the Cosmology Supernova Project [126] suggest that we live

in a flat Universe, with Ωk very close to zero. The matter density parameter Ωm

is approximately 0.3, and the cosmological constant density parameter ΩΛ is about

0.7. The matter density is actually higher than what can be accounted for from

baryonic matter alone (matter made of protons, neutrons and electrons). In fact, most

of the matter in the Universe is non-baryonic, and neither emits nor interacts with

electromagnetic radiation. This type of matter is called dark matter and apparently it

can only be detected indirectly from its gravitational effects. Hence, we can split Ωm
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Fit Ωm ΩΛ Ωk Ωb Ωc

BAO+CMB+H0 0.267 0.733 0 (fixed)
SNe 0.277 0.723 0 (fixed)

SNE+BAO+H0 0.288 0.712 0 (fixed)
SNE+CMB 0.272 0.728 0 (fixed)

SNE+CMB+H0 0.262 0.738 0 (fixed)
SNE+BAO+CMB 0.278 0.722 0 (fixed)

SNE+BAO+CMB+H0 0.271 0.729 0 (fixed)
Planck 0.3175 0.6825 0 (fixed) 0.0490 0.2685

Planck + lensing 0.3036 0.6964 0 (fixed) 0.0479 0.2557
Planck + WMAP 0.315 0.685 0 (fixed) 0.049 0.266

Table 2.1: Fit results on density parameters from the Cosmology Supernova Project
[126] and the Planck mission [3]. The radiation density parameter, Ωr, is not included
here.

into the baryonic matter component Ωb and dark matter component Ωd:

Ωm = Ωb + Ωd. (2.48)

Data from the Planck mission [3] indicate that Ωb ≈ 0.049 and Ωd ≈ 0.26. In other

words, the Universe contains about 4.9% baryonic matter, 26% dark matter and the

rest is dark energy. Current data on the various density parameters are shown in Table

2.1.6.

2.1.7 Evolution of the scale factor

• Matter-dominated era:

The energy density for matter obeys the relationship ρm = ρ0,m/a
3. Substituting

for ρm in the Friedmann equation (2.37) and assuming k = 0 gives

ȧ2 = 8πGρ0,m

3
1
a
. (2.49)
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Figure 2.4: LCDM model:: 68.3%, 95.4%, and 99.7% confidence regions of the (Ωm,ΩΛ)
plane from supernovae Ia data (SNe Ia) combined with the constraints from Baryon
Acoustic Oscillation (BAO) data and CMB. The left panel shows the SNe Ia confidence
region only including statistical errors while the right panel shows the SN Ia confidence
region with both statistical and systematic errors. Figure taken from [126].

This is a separable differential equation. Since a(t0) = 1 at the present time t = t0,

the solution is

a(t) =
(
t

t0

)2/3
, ρm(t) = ρ0,m

a3 = ρ0,mt
2
0

t2
. (2.50)

In a matter-dominated Universe, the Universe expands forever. Nonetheless, the rate

of expansion, H(t), decreases with time

H ≡ ȧ(t)
a(t) = 2

3t . (2.51)

• Radiation-dominated era:

The energy density for radiation obeys ρr = ρ0,r/a
4. After carrying out the same

steps as in the matter-dominated case, we arrive at

a(t) =
(
t

t0

)1/2
, ρr(t) = ρ0,r

a4 = ρ0,rt
2
0

t2
. (2.52)
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Figure 2.5: The log of the energy density ρ as a function of the scale factor a(t) (left)
and scale factor a(t) versus time (right). In the beginning, the Universe underwent
inflation. As time increases, the dominant component is, first, radiation (a ∝ t2/3),
then matter (a ∝ t1/2), and now cosmological constant (a ∝ eHt).

In a radiation-dominated Universe, the Universe also expands forever. The expansion

rate, H(t), also decreases with time, but it is slower than the matter-dominated case

due to the pressure that radiation provides:

H ≡ ȧ(t)
a(t) = 1

2t . (2.53)

• Cosmological constant-dominated era:

The energy density for dark energy stays constant: ρΛ = ρ0,Λa
0, and the scale factor

evolves as

a(t) = eHt

eHt0
, H =

√
8πG

3 ρΛ. (2.54)

Redshifts and distances
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It is common in cosmology to use the term “redshift” to describe how far away a

distant object is and the epochs of the Universe. This cosmological redshift is caused

by the expansion of space. As we saw in previous sections, the Universe is expanding

and the galaxies and clusters are moving away from each other. The light from distant

stars and galaxies are found to be shifted toward the red end of the spectrum (the

wavelengths are stretched), and the farther away they are, the faster they are moving.

In cosmology, it is customary to characterize redshift based on a dimensionless

quantity z :

z = λobserved − λemitted

λemitted
−→ 1 + z = λobserved

λemitted
. (2.55)

If an object is at redshift z, it means that it is at a distance which emitted light that

has been stretched by a factor of 1 + z. At the time of writing, the highest observed

redshift (besides the cosmic microwave background) has redshift of z = 11.1.

We can relate the redshift z to the scale factor a(t) using general relativity. Light

propagation obeys the FLRW metric (2.9) with ds = 0, and for simplicity we assume

the light ray propagates radially from r = 0 to r = R so that dθ = dϕ = 0:

0 = −c2dt2 + a2(t)
[

dr2

1− kr2

]
. (2.56)

This simplifies to
cdt
a(t) = dr√

1− kr2
. (2.57)

The time it takes for the ray to get from r = 0 to r = R can be found by integrating

the above equation ∫ to

te

cdt
a(t) =

∫ R

0

dr√
1− kr2

, (2.58)
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where ‘e’ stands for ‘emitted’ and ‘o’ stands for ‘observed’. Now the subsequent crest

is emitted at time te + dte = te + λe/c and is observed at time to + dto = to + λo/c.

The spatial coordinates in the FLRW metric are comoving, so galaxies are still at the

same coordinate, and the radial integral remains the same

∫ to+dto

te+dte

cdt
a(t) =

∫ R

0

dr√
1− kr2

. (2.59)

From the two previous equations,

0 =
∫ to

te

dt
a(t) −

∫ to+dto

te+dte

dt
a(t)

=
∫ te+dte

te

dt
a(t) +

∫ to

te+dte

dt
a(t) −

∫ to+dto

te+dte

dt
a(t)

=
∫ te+dte

te

dt
a(t) −

(∫ te+dte

to

dt
a(t) +

∫ to+dto

te+dte

dt
a(t)

)

=
∫ te+dte

te

dt
a(t) −

∫ to+dto

to

dt
a(t)

For small variations of a(t) with time, we assume it is constant inside the integral. This

gives
dte
a(te)

= dto
a(to)

. (2.60)

Since dte = λe/c and dto = λo/c, we get the ratio

λo
λe

= a(to)
a(te)

. (2.61)

This shows that light is stretched in an expanding Universe (a(to) > a(te)). If there

were an intermediate observer comoving with the expansion, he would see the light

with a wavelength between the emitted and final observed wavelength. We want to

apply the above equation to the light received by us today, so to = t0. Comparing with
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(2.55), we see that

1 + z = a(t0)
a(te)

(2.62)

Note that light emitted closer to the Big Bang (a(te)→ 0) will have z →∞,

2.1.8 Problems with the original Big Bang model

Unfortunately, the original Big Bang model still has some shortcomings. It does

not completely describe some of the observed properties of the Universe, namely the

Horizon Problem, the Flatness Problem, and the magnetic monopole problem.

The Horizon Problem

One of the biggest problems with the original Big Bang model is that the cosmic

microwave background is uniform over the whole sky to only a few parts in 105. This

is quite remarkable, because the only way for two regions on the sky to have the same

temperature is that they are close enough to be in causal contact with each other so

that equilibrium conditions can be established. Nonetheless, the fastest speed that

information can travel is the speed of light, and if two said regions are far enough so

that light has not had enough time to travel between them, the regions are isolated

from each other. Yet this appears to be the case with our observed Universe. To an

observer, the CMB radiation coming from the opposite sides of the sky is from isolated

regions and has been travelling towards us since decoupling. Since the light has only

reached us now, there is not enough time for it to travel all the way to the other side

of the sky, yet the temperatures of these regions are very similar. This is known as the

horizon problem (or the homogeneity problem).
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Figure 2.6: A figure illustrating a(t) for three models with three different densities at
1 ns after the Big Bang. If the density of the Universe were to deviate from one by one
part in 1027 at 1 ns after the Big Bang, the curvature of the present Universe would
steer away from the flat geometry and be inconsistent with experimental data. Figure
from http://www.astro.ucla.edu/~wright/cosmo_03.htm

The Flatness Problem

The flatness problem is an example of a fine-tuning problem, in which the current

Universe could only result from a very finely tuned set of initial conditions. The

observed density of the Universe is very close to the critical density. Hence, the

geometry of the Universe is close to flat, perfectly balanced between an open Universe

and a closed one (see Figure 2.6). Let’s visit Equation (2.44), which reads

|Ω(t)− 1|= |k|
H(t)2a(t)2 . (2.63)

http://www.astro.ucla.edu/~wright/cosmo_03.htm
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From (2.50), (2.51), (2.52), (2.53), we can deduce the product H(t)2a(t)2 in the matter-

and radiation-dominated Universe:

H(t)2a(t)2 ∝ t−2/3, matter-dominated (2.64)

H(t)2a(t)2 ∝ t−1, radiation-dominated. (2.65)

Therefore,

|Ω(t)− 1|∝ t2/3, matter-dominated (2.66)

|Ω(t)− 1|∝ t, radiation-dominated (2.67)

In either case, |Ω(t)− 1| is an increasing function of time, and the flat geometry is an

unstable solution for the Universe. If Ω(t) deviates ever so slightly from unity at early

time, the Universe will be very quickly curved. We know that the Universe is very

close to flat today at t0 ≈ 4× 1017 seconds. Assuming a radiation-dominated Universe

(for simplicity), at a time 1 ns after the Big Bang, |Ω(t) − 1| needs to be less than

10−27! Indeed, the flatness problem would be resolved if the Universe were exactly at

the critical density, but there is no reason for it to prefer this value over the others.

Magnetic Monopole Problem

A magnetic monopole is a magnet with only one pole; it has a net magnetic charge.

As a consequence of models of unification of fundamental forces, the Grand Unified

Theories, magnetic monopoles were produced in large quantities in the very early

Universe. In the standard Big Bang model, given the density in which magnetic

monopoles were created, we would expect to observe magnetic monopoles in our present
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day Universe. However, we know that this is not the case, which means the magnetic

monopole density is far lower than expected.

2.1.9 Inflation

The original Big Bang model can be extended to answer those aforementioned

problems by adding cosmological inflation. Inflation is a theory of perfectly exponential

expansion of space in the early Universe. The inflationary epoch describes a rapid

exponential expansion of the Universe between 10−36 and 10−34 seconds after the Big

Bang. At the end of inflation, a is increased by a factor of at least 1027. After the

inflationary epoch, the Universe continued to expand, but at a slower rate (see Figure

2.5). Inflation model was developed in the 1980’s by Alexei Starobinsky, Alan Guth

and Andrei Linde.

During this period of rapid exponential expansion, quantum fluctuations are magnified

to cosmic size, which later form the seeds for the large scale structure in the Universe.

This rapid expansion offers the answer as to why opposite ends of the Universe have the

same temperature (the horizon problem). It also provides explanation to the flatness

and magnetic monopole problems.

Inflation is currently an active field of research, both in cosmology and particle

physics. The details on the mechanism of inflation are still unknown. The general

hypothesis is that inflation is driven by a phase transition of a scalar field. A phase

transition corresponds to a sudden change in the properties of a physical system, and

the phase transition of a hypothetical scalar called the "inflaton" is conjectured to

have driven inflation in the early Universe. There are currently a very large number

of different models of inflation, and observational cosmology will provide evidence to

narrow this down to a few favored models.



33

Inflation was needed to solved the three problems (horizon, flatness, monopole).

The ΛCDM model, now the Standard Model of Cosmology, was developed after the

idea of inflation was introduced, and it lives within the inflationary paradigm. When

inflation was proposed, the Universe was not known to be accelerating and it was not

known that the dark matter couldn’t be all baryonic. It only became clear later that

the inflationary Universe had to be dominated by Λ and cold dark matter.

The ΛCDM is the simplest model that currently offers the best explanation for

the observed properties of our current Universe. It is a parametrization of the Big

Bang cosmological model in which the Universe contains a cosmological constant

Λ, corresponding to dark energy, and cold dark matter (CDM). The ΛCDM model

correctly predicts the existence and structure of the cosmic microwave background

[45], the large scale structure of galaxies and galaxy clusters [43], the abundances of

light elements [11], and the accelerating expansion of the Universe [65].

The nature of both the dark energy and the dark matter are still unclear. Measurements

of the CMB and of the LSS with intensity mapping are meant to shed light on these

and other cosmological mysteries.

2.2 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is the blackbody radiation left over

from the Recombination Era in Big Bang cosmology. Before the creation of the CMB,

the Universe was a hot, dense and opaque plasma in which photons could not travel

freely. During the Recombination Era, the Universe cooled down to a temperature of

2700 K, cool enough to allow electrons and protons to form hydrogen atoms. Due to
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the expansion of the Universe, the CMB is redshifted and hence its blackbody spectrum

now peaks at 2.72 K [134].

We can measure three characteristics of the CMB:

1. The frequency spectrum f(ν).

2. The temperature T (n̂), where n̂ is the direction in the sky, n̂ = (θ, ϕ).

3. The polarization (Stokes) parameters.

2.2.1 Redshifting of the CMB

At the end of the Recombination Era, the temperature of the CMB is estimated to

be 3700 K. Because of the expansion of the Universe, its wavelength has been stretched

into the microwave regime.

The energy density of radiation per unit frequency interval u(ν) for black-body

radiation is described by the Planck distribution function:

u(ν, T )dν = 8πhν3

c3
1

ehν/kBT − 1dν (2.68)

The radiation is uniform in all directions and propagates at the speed of light, hence

the spectral radiance of a blackbody in thermal equilibrium is

B(ν, T ) = u(ν, T )c
4π = 2hν3

c2
1

ehν/kBT − 1 . (2.69)

The CMB spectrum was accurately measured by the FIRAS instrument on COBE,

and it follows the Planck spectrum to very high precision, as shown in Figure 2.7.

The peak temperature of the CMB, determined from its spectral radiance, is TCMB =
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Figure 2.7: CMB spectrum measured by the FIRAS instrument on COBE is plotted
along with the theoretical curve for a blackbody in thermal equilibrium at 2.725K [55].
The error bars are exaggerated by 400 times.
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2.725± 0.001 K. The CMB temperature across the sky is extremely uniform, within a

few parts in 105. This implies that the observable Universe was in thermal equilibrium

when the CMB was created.

The Planck distribution can be written in terms of the photon number density in

a frequency interval dν:

n(ν, T )dν = u(v, T )dν
hν

= 8πν2dν
c3

1
ehν/kBT − 1 . (2.70)

Now we can relate the temperature at time t1 to a temperature at redshift t2. Suppose

at time t1 the Universe is populated with a blackbody radiation of temperature T1.

Then a volume V1 contains

dN1 = V1
8πν2

1dν1

c3
1

ehν1/kBT1 − 1 (2.71)

photons in the frequency interval between ν1 and ν1 + dν1. At time t2 > t1, these

photons’ wavelengths are stretched by the expansion of the Universe; if we let r ≡

a(t1)/a(t2), then ν2 = rν1 and these photons occupy a new frequency interval

(ν2, ν2 + dν2) ⇐⇒ r(ν1, ν1 + dν1), r = a(t1)
a(t2)

< 1 if t2 > t1. (2.72)

The photons will occupy a new volume V2 = V1/r
3.
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dN1 = V1
8πν2

1dν1

c3
1

ehν1/kBT1 − 1

= V1

r3
8πr3ν2

1dν1

c3
1

ehrν1/kBT1 − 1

= V2
8πν2

2dν2

c3
1

ehν2/kBT2 − 1 (2.73)

= dN2

We made the assumption T2 = rT1 so that the number of photons is conserved:

dN1 = dN2. This is true for any frequency interval. Therefore, the radiation spectrum

at time t2 is also a black-body spectrum with temperature T2 = T1a(t1)/a(t2). By

definition of redshift, we can relate the present day temperature to a temperature at a

redshift z with the equation

T0 = T (z)
1 + z

. (2.74)

We can use this equation to estimate the temperature of the CMB at the time it was

created. The redshift factor of the surface of last scattering is zLS = 1100, which gives

a temperature of about 3000 K at the time of last scattering.

2.2.2 Temperature anisotropies

We now know that redshift gives us information about the temperature at the time

of last scattering, but in reality most of the information lies in the CMB’s temperature

field. There are small variations in the temperature of the CMB from point to point

in the sky. These variations are called anisotropies. They were first detected by the

COBE satellite in 1992. The temperature anisotropies captured by the Planck satellite

is shown in Figure 2.8 below. The predicted temperature anisotropies are very sensitive
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Figure 2.8: The Planck mission’s full sky map of the temperature anisotropies in
the CMB in the Galactic coordinate system (ESA/Planck Project). The map shows
deviations of ±300µK from the average temperature of 2.725 K. The contribution from
the Galaxy and the dipole anisotropy has been removed.

to a large range of cosmological parameters, so that an accurate measurement of them

can provide constraints on cosmological models.

Let’s now dive into the mathematical framework. Since we are interested in deviations

from the average temperature, we can define a dimensionless quantity:

Θ(n̂,x, η) = T (n̂,x, η)− T (η)
T (η) , (2.75)

where n̂ is the direction on the sky, x is the position of the observer, and η is the

conformal time. However, we can only measure Θ(n̂,x, η) in some locations x0 and η0

(i.e. locations around the Earth now). This is the source of cosmic variance, which

will be defined later.

We can project the temperature deviation Θ(n̂,x0, η0) onto a 2-dimensional sky.

Mathematically, this means expanding the temperature fluctuations using spherical

harmonics Yℓm(θ, ϕ), which form a complete orthonormal set on the unit sphere. Recall
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that the spherical harmonics are defined as

Yℓm(θ, ϕ) =

√√√√2l + 1
4π

(ℓ−m)!
(ℓ+m)!P

m
ℓ (cos θ)eimϕ, (2.76)

where ℓ is the multipole, which has range ℓ = 0, . . . ,∞. The index ℓ can be thought of

as giving the angular scale, with small ℓ corresponding to large angular scale and large

ℓ corresponding to small angular scale. For each value of ℓ, there are 2ℓ+1 values of m

corresponding to m = −ℓ, . . . , ℓ. Pm
ℓ (cos θ) are the associated Legendre polynomials.

The expansion of Θ(n̂,x, η) is therefore

Θ(n̂,x, η) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓm(x, η)Yℓm(n̂). (2.77)

Equation (2.77) can be inverted to find aℓm(x, η) by Fourier transform:

aℓm(x, η) =
∫ ∫

Θ(n̂,k, η) eik·x

(2π)3 Y
∗
ℓm(n̂) d3k dΩ. (2.78)

In particular, at a location x0 and conformal time η0,

Θ(n̂,x0, η0) = Θ(θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ π

θ′=0

∫ 2π

ϕ′=0
Θ(θ′, ϕ′)Y ∗

ℓm(θ′, ϕ′)Yℓm(θ, ϕ) dΩ′ (2.79)

and

aℓm(x0, η0) =
∫ π

θ′=0

∫ 2π

ϕ′=0
Θ(θ′, ϕ′)Y ∗

ℓm(θ′, ϕ′) dΩ′. (2.80)

We have Θ∗(n̂,x0, η0) = Θ(n̂,x0, η0) and Y ∗
ℓm(n̂) = Yℓ(−m)(n̂), so a∗

ℓm(x0, η0) = aℓ(−m)(x0, η0).
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The coefficient aℓm tells us about the magnitude of these fluctuations on different

angular scales. Since the temperature fluctuation coefficient aℓm is assumed to be a

random Gaussian variable in inflation theory, the mean value of all the aℓm is zero:

⟨aℓm⟩ = 0. Thus, the variance ⟨|aℓm|2⟩ measures the deviation of aℓm from zero and

gives the magnitude of the temperature anisotropies.

The monopole term (ℓ = 0) gives the average temperature of the whole sky (which

is at the moment 2.725 K). We can see this immediately because

Θ(θ, ϕ)ℓ=0 =
∫ π

θ′=0

∫ 2π

ϕ′=0
Θ(θ′, ϕ′)Y ∗

00(θ′, ϕ′)Y00(θ, ϕ) dΩ′

= 1
4π

∫ π

θ′=0

∫ 2π

ϕ′=0
Θ(θ′, ϕ′) dΩ′

= ⟨Θ(θ, ϕ)⟩

= 0, (2.81)

where the last line follows from the definition of Θ(n̂).

The dipole term (ℓ = 1) tells us about the relative motion of the observer and the

CMB photons. CMB photons coming toward the observer will appear blueshifted and

those going away from the observer will appear redshifted. By convention, the sum

in (2.80) starts at ℓ = 2 and goes to a given ℓmax, depending on the resolution of the

data.
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2.2.3 Angular power spectrum

We can define the (theoretical) angular power spectrum of these fluctuations as the

variance of the harmonic coefficients aℓm(x, η) as follows

⟨a∗
ℓmaℓ′m′⟩ = δℓℓ′δmm′Cℓ. (2.82)

The spatial average is taken over different positions x. Now, the expectation value for

the squared deviation from the average temperature is

⟨Θ(n̂,x, η) Θ∗(n̂,x, η)⟩ =
〈∑

ℓm

aℓmYℓm(θ, ϕ)
∑
ℓ′m′

aℓ′m′Yℓ′m′(θ, ϕ)
〉

=
∑
ℓℓ′

∑
mm′

Yℓm(θ, ϕ)Y ∗
ℓ′m′(θ, ϕ)⟨aℓma∗

ℓ′m′⟩

=
∑
ℓ

Cℓ
∑
m

|Yℓm(θ, ϕ)|2

=
∑
ℓ

2ℓ+ 1
4π Cℓ, (2.83)

where in the last line we have used the closure relation for spherical harmonics. Therefore,

if (2ℓ + 1)Cℓ/4π is plotted on a linear ℓ scale, or ℓ(2ℓ + 1)Cℓ/4π on a logarithmic ℓ

scale, the area under the curve is the temperature variance. However, the convention

is to plot the angular power spectrum as ℓ(ℓ+ 1)Cℓ/2π.

Observed angular spectrum The theoretical angular spectrum in 2.82 can’t be

measured, because we only have data at a particular location x0. What is actually

observed is the unbiased estimator Ĉℓ of Cℓ:
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Figure 2.9: The observed angular power spectrum Ĉℓ based on the 5 year WMAP data
[132]. The observational results are the data points with error bars. The red curve
is the theoretical Cℓfrom a best-fit model, and the blue band around it represents the
cosmic variance corresponding to this Cℓ.
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Ĉℓ = 1
2ℓ+ 1

ℓ∑
m=−ℓ

aℓma
∗
ℓm = 1

2ℓ+ 1

ℓ∑
m=−ℓ

aℓmaℓ(−m). (2.84)

The spatial average of Ĉℓ equals Cℓ:

⟨Ĉℓ⟩ = 1
2ℓ+ 1

ℓ∑
m=−ℓ

⟨aℓmaℓ(−m)⟩ = 1
2ℓ+ 1

ℓ∑
m=−ℓ

Cℓ = Cℓ. (2.85)

We want to know how Ĉℓ compares to the actual Cℓ, so we want to find the cosmic

variance, defined as
∆Cℓ
Cℓ
≡

√
⟨(Cℓ − Ĉℓ)2⟩

Cℓ
=
√

2
2ℓ+ 1 . (2.86)

This is the cosmic variance for idealized full sky coverage. If the observed patch covers

a solid angle Ω < 4π, the cosmic variance is increased by a factor of 4π/Ω. For small

values of ℓ, such as ℓ = 2, we only have 5 independent measurements to average.

However, cosmic variance is much smaller for higher values of ℓ. In summary, cosmic

variance is a fundamental limitation, not an experimental limitation, because we can

only observe one Universe at a particular time, at a particular place, with a limited

number of m-modes.

2.2.4 Acoustic Oscillations

Before the formation of neutral hydrogen, the early Universe was hot, dense and

ionized. Photons and baryonic matter were tightly coupled by Thomson and Coulomb

scattering. The acoustic oscillations of the photon-baryon fluid produce the peaks

and troughs in the CMB angular power spectrum. The evolution of anisotropies is

determined by fluid dynamics. Neglecting the dynamical effects of gravity and baryons,
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the temperature perturbations in Fourier space satisfy the continuity equation [61]

(below) and the Euler equation.

Θ̇(k) = −1
3kvγ, (2.87)

where Θ̇(k) is the derivative of the monopole or temperature fluctuation Θ(k) with

respect to conformal time η =
∫

dt/a(t) (the maximum comoving distance a particle

could have traveled since t = 0), and vγ is the dipole or the bulk velocity of the photon

fluid.

The coupled Euler equation is

v̇γ = kΘ. (2.88)

Differentiating Θ̇ and combining it with the equation for v̇γ forms the simple harmonic

oscillator equation

Θ̈ + k2

3 Θ = 0. (2.89)

For photon domination (dynamically baryon free), the speed of sound in the fluid

squared is c2
s = ṗ/ρ̇ = 1/3, so the oscillation equation becomes

Θ̈ + c2
sk

2Θ = 0.

The solution is

Θ(η∗) = Θ(0) cos(ks), (2.90)

where the asterisks denote evaluation at recombination and s =
∫ η

0 csdη′ is the distance

sound can travel in η, or the sound horizon. The effective temperature accounts for

the redshift a photon experiences when climbing out of the gravitational well, also

known as the Sachs-Wolfe effect. In the limit of large scales compared with the sound
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horizon ks≪ 1, the perturbation has very little difference from the initial conditions.

Smaller scale modes oscillate more rapidly, and those that are trapped in a maximum

or minimum at recombination result in peaks in the power spectrum. The peaks in

Fourier space follow a harmonic relationship kn = nπ/s∗ where n is an integer. In real

space, this corresponds to approximately 1◦ spacing betweens the peaks.

The initial conditions Θ(0) of the temperature fluctuations arise within the framework

of inflation. Inflationary theory relates scale-invariant curvature fluctuations to the

initial temperature fluctuations. It postulates the existence of a scalar field that drove

the exponential expansion of the Universe. Quantum fluctuations in the scalar field

grew during the inflationary epoch and introduce spatial curvature variations. General

relativity also says that the Newtonian potential (a time-time perturbation in the

metric) gives a temporal shift of δt/t = Ψ. The CMB temperature varies as the inverse

of the scale factor that depends on time as

a ∝ t
2

3(1+p/ρ) . (2.91)

The fractional change in the CMB temperature is

Θ = −δa
a

= −2
3

(
1 + p

ρ

)−1
δt

t
. (2.92)

We see that the initial temperature fluctuations depend directly on the initial gravitational

potential perturbations. The temperature perturbation is −Ψ/2 in the radiation-

dominated (p = ρ/3) era and −2Ψ/3 in the matter-dominated (p = 0) era.

The above treatment neglects the effect of gravity. The Newtonian potential Ψ and

the curvature fluctuation Φ change the acoustic oscillation by providing gravitational

force on the oscillator. The primary effect of gravity is to make the oscillations a
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competing force between pressure gradient kΘ and potential gradient kΨ with an

equilibrium when Φ + Ψ = 0. The oscillator equation and the Euler equation in the

previous section become

Θ̇(k) = −1
3kvγ − Φ̇

v̇γ = k(Θ + Ψ). (2.93)

The solution is now

[Θ + Ψ](η) = [Θ + Ψ](ηmd) cos(ks), (2.94)

where ηmd represents the start of the matter dominated epoch. The acoustic oscillation

now includes the effect of infall and compression of the fluids into gravitational wells,

and it is the effective (observed) temperature Θ+Ψ that oscillates. After recombination,

photons must climb out of the gravitational well and get gravitationally redshifted by

∆T/T = Ψ. Overdense regions in the sky are colder because photons lose energy

climbing out of gravitational wells and the opposite is true for underdense region; this

is known as the Sachs-Wolfe effect.

If one includes baryons in the model, the addition produces an extra inertia for

the photon-baryon fluid, lowering the sound speed and decreasing the sound horizon.

The addition of baryons also deepens the gravitational potential wells, leading to an

enhanced compressional phase over the rarefactional phase. Since the baryons enhance

only the compressional phase, this results in an elevated power in the odd numbered

peaks in the power spectrum. The photon-baryon fluid also has slight imperfections

caused by shear viscosity and heat conduction in the fluid. The inhomogeneities are

damped by an exponential factor of order e−k2η/τ̇ where τ̇ is the differential Thomson

optical depth. The damping scale kd is of order
√
τ̇ /η, which is the geometric mean
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of the horizon and the mean free path. Numerical calculations show that the damping

scale is of order kds∗ ≈ 10, which suppresses the oscillations beyond the third peak.

The CMB power spectrum is very sensitive to the variations in fundamental cosmological

parameters. Increasing the baryon density leads to an enhancement of the odd numbered

peaks. An increase in dark matter also increases the total matter content at a fixed

baryon density and decreases the overall amplitude of the peaks due to the weakened

effect of radiation driving. Spatial curvature and dark energy change the angular

distance to recombination and this shifts the peaks left and right and the power of the

Sachs-Wolfe plateau. Gravitational waves contribute to large angle anisotropy more

than small angle anisotropy and this lowers the relative heights between the peaks.

Figure 2.10 shows some variations of the acoustic temperature power spectrum to

some fundamental cosmological parameters.

2.2.5 Polarization of the CMB

Even though the acoustic peaks in the temperature power spectrum can reveal a lot

of information about the early Universe, cosmological parameters in the temperature

power spectrum exhibit degeneracies. Inflation is also not uniquely supported from the

temperature power spectrum alone. On the other hand, the polarization of the CMB

allows us to discover more information about the early Universe and whether inflation

did actually occur.

Any electromagnetic field can be described by the Stokes parameters. For an

electromagnetic wave propagating in the z direction with a single frequency ω0, the

components of the wave’s electric field vector are

Ex = E0x cos [ω0t− θx(t)] , Ey = E0y cos [ω0t− θy(t)] . (2.95)
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Figure 2.10: Variations of the acoustic temperature power spectrum to four
fundamental cosmological parameters (a) the curvature defined by Ωtot, (b) dark
energy defined by the cosmological constant ΩΛ(wΛ = −1), (c) the physical baryon
density Ωbh

2, (d) the physical matter density Ωmh
2 , all varied around a model with

Ωtot = 1,Ωbh
2 = 0.02,Ωmh

2 = 0.147. Figure from [61].
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Figure 2.11: (a) Stokes parameters describing the polarization for a wave propagating
along the positive z-axis. (b) The Q and U are mathematically decomposed into curl-
free E-mode and divergence-free B-mode.

There are four Stokes parameters I,Q, U and V . In the context of the CMB, I is

the radiation intensity or temperature, Q and U describe linear polarization, and V

describes circular polarization. For unpolarized radiation, Q = U = V = 0.

I ≡ ⟨E2
0x⟩+ ⟨E2

0y⟩ (2.96)

Q ≡ ⟨E2
0x⟩ − ⟨E2

0y⟩

U ≡ ⟨2E0xE0y cos(θx − θy)⟩ (2.97)

V ≡ ⟨2E0xE0y sin(θx − θy).⟩

The Stokes parameters I,Q and U are convenient tools to extract polarization data

from the CMB. As shown in Figure 2.11 (a), the Q polarizations are orthogonal to the

wave vector k⃗ and parallel to the x − y axis, while U polarizations are orthogonal

to the wave vector k⃗ and aligned at an angle of 45◦ from the x − y axis. Since

CMB polarization is generated through Thomson scattering, which results in only
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linear polarization, the circular polarization V component of the CMB is expected to

be zero. However, cosmologists often decompose the CMB polarization into E-mode

and B-mode. Note that E-mode has parity symmetry while the B-mode does not.

Reflecting the wave vector k⃗ over the xy plane does not change the E-modes while

the B-modes flip. Accordingly, E-modes are curl-free (no handedness, like the electric

field) while B-modes are divergence-free (having handedness like the magnetic field).

From (2.97), we can see that when the coordinate system is rotated by an angle α,

the new Stokes parameters can be written as

Q′ = Q cos(2α) + U sin(2α) (2.98)

U ′ = −Q sin(2α) + U cos(2α).

These parameters transform not like a vector but like a two-dimensional, second-rank

symmetric trace-free tensor. In spherical polar coordinates (θ, ϕ), the metric tensor is

gab =

 1 0

0 sin2(θ)

 . (2.99)

Following the treatment by Kamionkowski [68], the polarization tensor describes

the CMB polarization and is given by

Pab(n̂) = 1
2

 Q(n̂) −U(n̂) sin(θ)

−U(n̂) sin(θ) −Q(n̂) sin2(θ)

 . (2.100)

Note that Pab(n̂) is symmetric and trace (gabPab) free. The polarization tensor Pab(n̂)

can be decomposed in terms of the spherical harmonics, which form a complete set of
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orthonormal basis functions on the sphere

Pab(n̂)
T0

=
∞∑
ℓ=2

ℓ∑
m=ℓ

[
aE(ℓm)Y

E
(ℓm)ab(n̂) + aB(ℓm)Y

B
(ℓm)ab(n̂)

]
.

The polarization tensor Pab(n̂) is broken into two orthonormal components Y E
(ℓm)ab(n̂)

and Y B
(ℓm)ab(n̂) (which are the E-mode and B-mode). Assuming Gaussianity, the

statistics of the CMB temperature/polarization can be fully described by power spectra.

Along with temperature, there are three power spectra TT,EE and BB and three

cross-power spectra:

⟨aT∗
(ℓm)a

T
(ℓ′m′)⟩ = CTT

ℓ δℓℓ′δmm′ ⟨aT∗
(ℓm)a

E
(ℓ′m′)⟩ = CTE

ℓ δℓℓ′δmm′

⟨aE∗
(ℓm)a

E
(ℓ′m′)⟩ = CEE

ℓ δℓℓ′δmm′ ⟨aT∗
(ℓm)a

B
(ℓ′m′)⟩ = CTB

ℓ δℓℓ′δmm′

⟨aB∗
(ℓm)a

B
(ℓ′m′)⟩ = CBB

ℓ δℓℓ′δmm′ ⟨aE∗
(ℓm)a

B
(ℓ′m′)⟩ = CEB

ℓ δℓℓ′δmm′ .

(2.101)

The scalar spherical harmonics Y(ℓm) and the E tensor harmonics Y E
(ℓm) have parity

(−1)ℓ, but the B tensor harmonics Y B
(ℓm) have parity (−1)ℓ+1. Since (−1)ℓ+ℓ′+1 = (−1)

when ℓ = ℓ′, symmetry under parity tranformations requires that CTB
ℓ = CEB

ℓ = 0.

2.2.6 Sources of CMB polarization

CMB polarization is created from Thomson scattering of electrons with surrounding

photons possessing quadrupolar variation in intensity or temperature at the time of

last scattering, as shown in Figure 2.13. On the other hand, a free electron surrounded

by photons having an isotropic or dipole variation in temperatre will scatter photons

with no net polarization. If Thomson scattering is rapid, the random scatterings would

destroy quadrupole anisotropy and polarization. An understanding of the quadupolar
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Figure 2.12: Planck 2018 CMB’s TE, and TE power spectra [6], where Dℓ = ℓ(ℓ +
1)Cℓ/2π. The light blue line in each panel represents the ΛCDM model theoretical best
fit. The residuals with respect to the fitted lines are shown in the smaller rectangular
box in each panel. The horizontal axis switches from logarithmic to linear at ℓ = 30
(grey vertical line in each panel). The error bars show ±1σ diagonal uncertainties,
including cosmic variance.
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Figure 2.13: A depiction of Thomson scattering of radiation with a quadrupole
anisotropy generating linear polarization. Hot radiation (blue) and cold radiation (red)
combine to produce net polarization. Figure from [63].

temperature fluctuations at the last scattering surface ultimately leads to an understanding

of the polarization of the CMB.

Sources of quadrupoles

There are three main types of perturbations that gives rise to quadrupole anisotropies

and thus the CMB: scalar (compressional), vector (vortical), and tensor (gravitational

wave) perturbation.

• The scalar perturbation is the most common type of perturbation. They represent

perturbations in the energy density of the cosmological fluids at the time of

last scattering and are the only fluctuations that can form structure through

gravitational instability. The quadrupolar moment in the photon temperature

distribution is produced when there are flows from locally underdense regions
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Figure 2.14: Flow from hot region into the cold region resultng in a scalar quadrupole
moment that is azimuthally symmetric Y m=0

ℓ=2 . Figure from [63].

(hot or crest) to locally overdense regions (cold or trough) (see Figure 2.14). An

observer in the trough would see hotter photons from the crests flow into the

trough from the ±k̂ directions and colder photons surround them, resulting in a

quadrupole pattern Y m=0
ℓ=2 seen in the trough. An observer in the crest would see

the velocity and the sign of the quadrupole reversed. In Figure 2.15, Thomson

scattering together with quadrupole anisotropies caused by scalar perturbations

result in an E-mode polarization pattern. The strength and shape of the E-

mode power spectrum can be predicted from the Euler equation (2.88) and

the monopole or temperature oscillation equation (2.90). Since the dipole (or

bulk velocity) term vγ is proportional to the first derivative of the monopole

(temperature) fluctuation Θ, the dipole and the monopole terms are π/2 out

of phase but of the same order of magnitude at recombination. However, the

quadrupole moment that generates scalar mode polarization is of order kvγ/τ̇ ,
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Figure 2.15: E-mode polarization resulting from a single Fourier mode of scalar
perturbation. The wave vector is depicted in green. The scattered light is polarized at
an angle 90◦ to the incoming wave vector. Figure from [101].

and the polarization spectrum is smaller than the temperature spectrum by a

factor of order k/τ̇ ≈ 10 at recombination [61]. Thus, the EE power spectrum

resulting from quadrupole moment is out of phase with the temperature anisotropy

(Θ) and its amplitude is down from the temperature power spectrum by a factor

of ten. The TE cross-power spectrum shows oscillations at twice the frequency

of either the TT or EE power spectrum.

• Vector perturbations represent vortical motions of matter. The vorticity is damped

as the Universe expands and thus vector perturbations are ignored in many

standard cosmological models.

• Tensor perturbations are transverse-traceless perturbations to the metric, which

can be considered as gravitational waves. A plane gravitational wave perturbations

represents a quadrupolar stretching of space in plane of perturbation. The

passage of gravitational waves through density fluctutations results in polarization

with both E-mode and B-mode components, as shown in Figure 2.16. Primordial

gravitational waves are the only expected source of B-mode polarization from the
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Figure 2.16: E-mode and B-mode polarization resulting from a single Fourier mode of a
gravitational wave. The wave vector is depicted in green. A plus polarized gravitational
wave h+ (top) produces E-mode polarization. A cross polarized gravitational wave h×
(bottom) produces B-mode polarization. Figure from [101].

time of recombination. Many models predict that primordial gravitational waves

were produced at the time of inflation, and hence the detection of primordial

B-mode polarization would be direct evidence of the theory of inflation. It would

also help to distinguish different models of inflation and provide understanding of

the energy scale at which inflation occurred. The strength of tensor perturbations,

or B-mode, is characterized by the tensor-to-scalar ratio r.

Gravitational lensing

In the presence of matter, the path of a light ray can be deflected by gravity.

This is known as gravitational lensing. As CMB photons travel to Earth from the
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Figure 2.17: The gravitational lensing effect on temperature, E-polarization field and
B-polarization field. Figure adapted from [62].

last scattering surface, their paths are deflected by foreground matter which distorts

the observed pattern of CMB anisotropies. In addition, gravitational lensing affects

the CMB’s E and B polarization field much more than temperature. Gravitational

potentials along the line of sight can mix the stronger E-mode signal into B-modes (see

Figure 2.17). Lensing distortions obscure the information contained in the primordial

B-mode polarization signal, and B-mode polarization measurements are expected to

be dominated by lensing noise. For small values of the tensor-to-scalar ratio r, the

gravitational lensing dominates the primordial B-mode, but fortunately the two signals

peak at different angular scales (see Figure 2.18), making it possible to separate the

two signals. Removing the lensing-induced noise (delensing) is essential in maximizing

the information we can get about inflation.

Even though gravitational lensing contaminates the primordial CMB signals that

contain clues about inflation, the information contained in lensing maps is important
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Figure 2.18: Theoretical prediction for the temperature (black), E-mode (red), and
tensor B-mode (blue) power spectra. Primordial B-mode power spectra are show
for two tensor-to-scalar ratios r = 0.05 and r = 0.001. The green curve shows the
contribution to B-mode from gravitationally lensed E modes. Figure from [1].

on its own. The power spectrum of the lensing detection map is sensitive to physics

that governs how structure grows, such as dark energy, modified gravity and the masses

of the neutrinos.

Gravitational lensing can be measured because the statistical properties of the

primordial (unlensed) CMB are well-known. In addition, B-mode lensing is the only

contribution to theB-mode signal at small angular scales; it is non-degenerate. Therefore,

the distortions caused by gravitational lensing can be used to make a map of the

gravitational potentials in the foregrounds.

2.2.7 The inhomogeneous Universe

In the next chapter, we will introduce a cosmological Boltzmann code (CMBAns),

which is used to compute the CMB angular power spectra from the anisotropies in the
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distributions of photons and matter. The name Boltzmann comes from the Boltzmann

equation that describes the statistical behavior of a thermodynamic system not in a

state of equilibrium. It can be used to compute how physical quantities (energy &

momentum) change. So far, we have worked with the flat FRLW metric:

ds2 = −dt2 + a2
(
dx2 + dy2 + dz2

)
(2.102)

However, as we know from the CMB, the Universe is not perfectly smooth, even on large

scales. We need cosmological perturbation theory to describe a non-smooth Universe.

We assume that the matter fluids (baryons, photons) had some small perturbations.

For example, the perturbations for density, pressure, and velocity field have the form:

ρ(t, x⃗) = ρ̄(t) + δρ(t, x⃗)

P (t, x⃗) = P̄ (t) + δP (t, x⃗)

v⃗(t, x⃗) = v⃗(t) + δv⃗(t, x⃗),

(2.103)

where the bar denotes the average quantity (i.e. ρ̄(t) ∝ 1/a3 is the matter density in a

perfectly smooth Universe), and δρ(t, x⃗) denotes the perturbation. We assume higher

order perturbations are negligible. Having defined the perturbations, we want to know

how these perturbations evolve. A big overdensity will create a deep gravitational well

to attract matter until radiation pressure resists it. We can describe this process with

the distribution function for each species fi and the perturbation to the distribution

function

fi(t,x,p) = fi(t,p) + δfi(t,x,p). (2.104)
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Figure 2.19: The interaction between different components of the Universe. The
connections are described by the Boltzmann and Einstein equations. Protons and
electrons are tightly coupled through Coulomb scattering and we can treat them as a
single component: baryons. We do not consider perturbations to dark energy and it
only enters the background metric.

The distribution function describes all the properties of a collection of particles, such

as density and pressure. In addition, we need to take into account the interactions

between different species, using the Boltzmann equation. Perturbing the energy density

and pressure also perturbs the energy-momentum tensor on the right hand side of the

Einstein equation, so the metric will also get perturbed. This process is summarized

in Figure 2.19.
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2.2.8 Metric perturbations and the Boltzmann equation

Since the energy density and pressure is perturbed, there is a corresponding perturbation

in the energy-momentum tensor: Tµν = T̄µν + δTµν . The metric also gets perturbed:

gµν = ḡµν + δgµν , where ḡµν is the unperturbed FLRW metric. We can decompose the

perturbed metric into scalar, vector, and tensor components. The Einstein equations

for scalars, vectors, and tensors are independent at the first order and can be treated

separately. Scalar perturbations are associated with density fluctuations. Vector

perturbations are not produced by inflation. Tensor perturbations, or gravitational

waves, are an important predictor of inflation. The goal is to derive a set of equations

that determines how structures formed in the early Universe. The starting point is the

Boltzmann equation, which describes how the distribution function of some particle

species evolves with time:

df
dλ = C[f ], (2.105)

where λ is an affine parameter along a trajectory. The term on the right hand side is the

collision term, which describes how particles are moved from one phase-space element

to another. Collisions include scattering, pair creation, annihilation, and particle decay.

We perturb the distribution function fi for each species (baryons, radiation, and

cold dark matter). For each species, we evaluate the Boltzmann equation df
dλ = C[f ]

where the right-hand term describes the interaction between different species. Two

major interactions are Compton scattering e− + γ ⇀↽ e− + γ and Coulomb scattering

e−+p+ ⇀↽ e−+p+. The perturbation in each species’ density and pressure will give us a

perturbed energy-momentum tensor δTµν , which in turn gives us the perturbed Einstein

equation δGµν = 8πGδTµν . This will return a closed system of coupled differential
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equations for how the metric perturbation, the baryon density, baryon velocity, CDM

density, CDM velocity, etc. evolve. After getting the photon and baryon temperature

perturbations, we can expand them in terms of spherical harmonics and calculate the

CMB angular spectrum. The mathematical details of this process are described in Ma

Bertschinger (1995) [85].
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Chapter 3

CMBAns

Most of content of this chapter is based on the paper: “Cosmic Microwave

Background Anisotropy numerical solution (CMBAns) I: An introduction to Cℓ

calculation" published in JCAP on May 2020. The full version is given here:

https://iopscience.iop.org/article/10.1088/1475-7516/2020/05/006 .

This chapter will introduce CMBAns, which is a cosmological Boltzmann

code for computing the CMB angular power spectra for a flat Universe.

It is developed in the C language with modularity in mind, from which

other researchers can develop their own independent packages without

understanding the source code. CMBAns currently does not support calculations

of the matter power spectrum that is used in measurements of the LSS

by galaxy redshift surveys and intensity mapping. It also does not include

secondary anisotropies from CMB lensing. For more detail on the modularity

of the code, please refer to Appendix C.

https://iopscience.iop.org/article/10.1088/1475-7516/2020/05/006
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3.1 Introduction to CMBAns

Since the discovery of the Cosmic Microwave Background (CMB) by Penzias and

Wilson, the CMB has become an invaluable probe for understanding the physics in the

early Universe. Several cosmological theories, proposed in the past, failed to explain

the origin of the CMB. Hence, they were rejected as feasible cosmological theories.

Others, like Big Bang cosmology, with some assumptions, provide a more complete

explanation of the origin of CMB radiation. These models later, after several theoretical

modifications, were accepted as the standard cosmological models. Hence, the discovery

of the CMB marked the path for the birth of standard cosmology.

The precision of CMB observations has improved over the years. In the past decade,

several ground-based and space-based experiments like WMAP, Planck, BICEP, ACT

etc. have measured the CMB temperature anisotropies to an exquisite precision.

Future experiments like SPT-3G, Simons Observatory and CMB-S4 will provide even

better measurements of CMB temperature and polarization [1]. To analyze this influx

of data and to test different cosmological models, we also need more accurate Boltzmann

codes.

The theory of cosmological perturbations for standard model cosmology was first

developed by Lifshitz [81] and later was reviewed by many others [82]. The subsequent

research works are summarized in review articles [69, 97], in books and in theses [133,

129]. In electromagnetism, the electric field E and the magnetic field B can be

expressed in terms of a scalar field ϕ and a vector field A, which together form a

gauge, that have to satisfy certain conditions. The physics of electromagnetism does not

depend on a particular choice of gauge (gauge invariance). Similarly, in cosmological

perturbation theory, there are many choices of coordinates, or gauges. The physics
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must be invariant under a general coordinate transformation (gauge transformation).

Lifshitz used the synchronous gauge for formulating the linear perturbation theory,

since synchronous gauge makes some perturbation variables identically zero. Later,

Bardeen and others developed the perturbation theory in the conformal Newtonian

gauge due to some complications with the synchronous gauge, such as the appearance

of the coordinate singularity [69, 20] etc. The conformal gauge is more frequently used

for analytical calculations of the cosmological perturbation equations. However, the

synchronous gauges are preferred for the numerical calculations due to the stability

issues [94, 60].

The Boltzmann codes have been in use in cosmology for a long time to calculate the

CMB angular power spectrum. The first such code provided in the public domain was

COSMICS [86], written by Ma and Bertschinger. Later, Seljac and Zaldarriaga developed

CMBFAST [121, 138], in which the line-of-sight integration method was used to make the

power spectrum calculation faster. Since then, several packages utilizing Boltzmann

codes, such as CAMB [74], CMBEasy [50], CLASS [71, 24, 72, 73], PyCosmo [113] etc., have

come into existence. In this paper, we describe a new Boltzmann code, called CMBAns

(Cosmic Microwave Background Anisotropy numerical solution). The package is based

on CMBFAST and was initially developed in 2010 for a variety of CMB studies [37, 40, 42].

There are three principal motivations behind developing CMBAns. First of all, in

future CMB missions, the precision of the CMB measurements will improve drastically.

Hence, the Boltzmann packages should be able to calculate the CMB power spectrum

very accurately up to high multipoles. Secondly, different Markov Chain Monte Carlo

(MCMC) packages, such as CosmoMC [77, 76], SCoPE [41], AnalyzeThis [51], etc.,

which are often used to estimate the cosmological parameters, typically require 103

- 104 evaluations of Boltzmann codes. Therefore, the Boltzmann code should be
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able to calculate the CMB power spectrum fast and efficiently. Thirdly, most of the

present Boltzmann codes follow a monolithic architecture design and are not modular.

Therefore, it is difficult to add any new feature in the package and the functions

cannot be used independently. Users cannot write their own packages and use existing

functions without an extensive knowledge of the entire source code. To overcome this

limitation, CLASS code introduced a modular architecture. CMBAns is also written in a

modular format. It consists of several stand-alone codes, as well as some user-defined

functions that users can use to write their codes.

CMBAns solves the linear Boltzmann equations for different constituents of the

Universe and thereafter uses the line-of-sight integration approach to calculate the

source terms and the brightness fluctuations. These are then convolved with the

primordial power spectrum to get the CMB angular power spectrum. CMBAns can

calculate the cosmological power spectrum for different dark energy models (both

perturbed and unperturbed). Poulin et al. [110] proposed the existence of early dark

energy that behaves like a cosmological constant at early times before recombination

(z ≳ 3000), but whose energy density decreases as the Universe expands. This has

the effect of increasing the CMB-inferred value of H0 while leaving the later evolution

of the Universe unchanged. This can potentially resolve the Hubble tension. CMBAns

comes with a MATLAB GUI, where the Hubble parameter of the Universe can be

visually modified as a function of redshift. CMBAns translates the modified Hubble

parameter into the dark energy equation of state (EOS) and then computes the CMB

power spectrum for that particular model [42].

In addition, CMBAns is capable of calculating the temperature and polarization

anisotropies with contribution from massive neutrinos (along with baryons). Neutrinos

were produced in large numbers in the high temperatures of the early universe, and they



67

left distinctive imprints in the CMB and on the large-scale structure. Recent neutrino

oscillation experiment shows that neutrinos have tiny masses. However, the overall

magnitude of the masses is not known and it is currently an active field of research.

Determining the neutrinos’ mass is one of the key science goals of the CMB-S4 and

Simons Observatory [1, 4]. In CMBAns, users can specify massive neutrino density and

the number of neutrino species.

In this chapter, I will describe the mathematical foundations for the first three

chapters of CMBAns – the part I was responsible for. I will describe the overall picture

of the power spectrum calculation process in the section 3.2. I will also present the

conformal time calculations between any two eras in the Universe and then describe

different recombination processes, baryon temperature calculation, sound speed, optical

depth and visibility. I will show CMBAns output power spectra for different initial

perturbation conditions. The final section is for the conclusion.
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3.2 Summary

The step-by-step big picture of the power spectrum calculation is as follows:

1. Calculate the distance using conformal time from z = 0 to z = 108, a region deep

inside the radiation dominated era (See the right panel in Figure 3.1). The initial

conditions are also set during this era.

2. Calculate the temperature field as a function of line-of-sight distance. The current

monopole temperature of the CMB is 2.7 K with spatial variation of about 50

µK. This temperature will be different at different redshifts. To find it, we need

to calculate the baryon temperature at each scale factor. In the beginning, when

baryons and radiation are coupled, the baryon and radiation temperatures are

the same. After decoupling, the baryon’s temperature slowly falls compared to

the radiation temperature. The baryons in the Universe were subjected to various

sources of heating and cooling. This is done in section 3.4.4.

3. With the baryon temperature solved, we can calculate the ionization fraction as

a function of conformal time. We can then calculate the number density of free

electrons, which is used to calculate the optical depth and the visibility. The

total ionization fraction is given by Equation 3.40.

4. We calculate the visibility along the line of sight. The visibility describes how

opaque the gas is to photons. The visibility function at any conformal time τ is

defined as g = κ̇ exp (−κ), where κ is the optical depth. In Figure 3.8, we show

the visibility function vs the scale factor.
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Figure 3.1: Left : The ionization fraction xe = ne/nH from the recfast recombination
routine (a module inside CMBAns). Right : Change of the photon baryon interaction
time scale

(
τc = (aneσT )−1

)
over time is plotted in red and the time scale at which the

modes in the super-Hubble scale evolve (τH = a/ȧ) is plotted in blue. In the region
where τc ≪ τH , the photons and baryons are tightly coupled to each other. We choose
conformal time to be zero at redshift 108.

5. Solve the perturbation equations in the scalar and tensor components in the

metric, Einstein tensor and stress-energy tensor numerically. We evolve the

conservation equations (δT µν;µ = 0) for different components of the Universe,

which progress independently except before decoupling, when the baryons and

photons evolve together as a single fluid. We consider the density and velocity

perturbations (δ and θ) for cold dark matter (CDM), massless and massive

neutrinos, photons, baryons, and dark energy.

6. Calculate the source functions ST (k, τ) and SP (k, τ) for the temperature and

polarization. The source terms are the products of the density fluctuation with

the visibility and are functions of both the magnitude of k and the conformal

time τ . They are used to calculate the rotationally invariant primordial power

spectrum P s(k). The primordial power spectrum for the anisotropic inflation

model is taken as
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P s(k⃗) = P s(k)
[∑
lm

glm(k)Ylm(k̂)
]

(3.1)

where the glm’s are the spherical harmonic coefficients of g and g00 = 1. The

source terms describe the density fluctuation in directions perpendicular to and

parallel to the line of sight.

7. Solve the intensity and polarization fluctuations, ∆T and ∆P , using the Boltzmann

equations below:

∂∆T

∂τ
+ ikµ∆T + 2

3 ḣ+ 4
3(ḣ+ 6η̇)P2(µ) =

(
∂∆T

∂τ

)
C

(3.2)

∂∆P

∂τ
+ ikµ∆P =

(
∂∆P

∂τ

)
C

, (3.3)

where the terms on the right hand side are the collision terms due to Compton

scattering. (They correspond to Equation 4.44 and 4.45 in the original paper.)

The brightness fluctuation functions for temperature and E mode polarization

as a function of ℓ, after solving the Boltzmann equations, are given by

∆T l(k) =
∫ τ0

0
dτ ST (k, τ)jl(x) , ∆El(k) =

√√√√(l + 2)!
(l − 2)!

∫ τ0

0
dτ SP (k, τ)jl(x)(3.4)

8. The scalar power spectrum can be calculated as

CXX
l = (4π)2

∫
k2 dk P s(k)[∆s

Xl(k)]2 , CTE
l = (4π)2

∫
k2dk P s(k) ∆s

T l ∆s
El ,(3.5)
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where, X can be T or E. The angular power spectrum of the CMB is the

convolution of the initial fluctuations, P (k), i.e. the primordial power spectrum

set by inflation, and the transition of this fluctuation through different phases of

the Universe, which is described by the integral of the source functions.

The power spectrum for the tensor perturbations can be calculated in a similar

manner. However, as the tensor fluctuations are spin 2 quantities, we get an extra√
(l−2)!
(l+2)! term in the brightness fluctuation functions. The brightness fluctuation

functions for the tensor perturbation are

∆t
T l(k) =

√√√√(l − 2)!
(l + 2)!

∫ τ0

0
dτ StT (k, τ)jl(x) , ∆t

E,Bl(k) =
∫ τ0

0
dτ StE,B(k, τ)jl(x).(3.6)

The brightness fluctuation functions can be convolved with the primordial tensor

power spectrum to get

CtXX
l = (4π)2

∫
k2 dk P t(k)[∆t

Xl(k)]2 , CtXY
l = (4π)2

∫
k2dk P t(k) ∆t

Xl ∆t
Y l ,(3.7)

where (X, Y ) ∈ (T,E,B).

3.3 Conformal time calculation

In cosmology, the redshift z is often used for measuring time. However, for numerical

calculation of the perturbation equations, line-of-sight integration, etc., the conformal

time plays an important role. It is straight-forward to calculate the conformal time

under the assumption of a matter-dominated or dark energy-dominated Universe.
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Figure 3.2: Plot of da
dτ for different Ωc (top) and H0 (bottom). The radiation dominated,

matter dominated, and the dark energy dominated eras are clearly shown in the top
plot. As shown in Eq. 3.10, da

dτ is constant in the radiation dominated era (orange),
varies as a 1

2 in the matter dominated era (blue) and varies as a2 in the dark energy
dominated era (gray).
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However, in the presence of all the components of the Universe, the calculations can

be complicated and an analytical solution may not exist.

We denote the conformal time as τ . The Hubble parameter H(τ) is defined as

H2(τ) =
(

1
a2

da
dτ

)2

, (3.8)

where a is the scale factor. From the FLRW equation, we can write the Hubble

parameter as

H(τ)2

H2
0

= Ω0,ma
−3 + Ω0,γa

−4 + Ω0,νa
−4 + Ωνm + Ωd . (3.9)

The above two equations give

da
dτ =

√√√√a4H2
0

(
Ω0,ma−3 + Ω0,γa−4 + Ω0,νa−4 + Ωνm + Ωd

)
, (3.10)

where Ω0,m, Ω0,γ, and Ω0ν are the density parameters for present-day matter (which

includes both cold dark matter and baryonic mater), photons, and massless neutrinos,

respectively. The density parameter of massive neutrinos and dark energy at a scale

factor a are Ωνm and Ωd, respectively. The density parameters are defined as the ratios

of the respective densities over the critical density:

Ω0,m = ρ0,m

ρcr
, Ω0,γ = ρ0,γ

ρcr
, Ω0,ν = ρ0,ν

ρcr
, Ωνm = ρνm

ρcr
Ωd = ρd

ρcr

where the critical density ρcr is given by ρcr = 3H2
0

8πG . The densities of matter and

radiation at any era are scaled as a−3, a−4, respectively, with their densities at the

present era. For calculating the density of the massive neutrinos, we need to use the

Fermi-Dirac statistics. For a Λ dark energy model, the density of the dark energy
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will be constant. However, for any other dark energy model, we need to calculate the

density variation from its equation of state (eos). Figure 3.2 shows the plot of da
dτ for

different values Ωc (left) and H0 as calculated by CMBAns.

3.3.1 Matter density

The first term in Eq. 3.10 can be calculated by evaluating aH2
0 Ω0,m. As the CDM

and baryon density parameters, Ω0,c and Ω0,b are the input parameters, we can calculate

Ω0,m = Ω0,c+Ω0,b. H0 is also an input parameter, but its unit is km/s/Mpc. In CMBAns,

we use Mpc as the unit for both the spatial and temporal dimensions. In order to

convert the Hubble parameter in Mpc−1, we multiply H0 with 1/c2 = 1.11265× 10−11

(km/s)−2.

3.3.2 Radiation density for photons

The radiation density consists of two components: photon density ργ and the

massless (relativistic) neutrino density ρν . The photon number density as a function

of frequency can be derived from the Planck radiation law:

nγ(ν) dν = 8πν2 dν
ehν/kBT0 − 1 , (3.11)

where kB is the Boltzmann constant, h is the Planck constant, and T0 is the current

CMB temperature. The photon energy density can be calculated as

ρ0,γc
2 =

∫ ∞

0
hνnγ(ν) dν = aBT

4
0 , (3.12)
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where aB = 8π5k4
B

15h3c3 = 7.56577× 10−16 Jm−3K−4 is the radiation constant. We also know

that

ρcr = 3H2
0

8πG = 1.87847× 10−30 H2
0 kg m−3(km/sec/Mpc)−2. (3.13)

Therefore, the second term in Eq. 3.10 can be calculated by evaluating H2
0 Ω0,γ as

follows:

Ω0,γH
2
0 = ρ0,γ

ρcr
H2

0 = aB
c2ρcr

T 4
0 = 4.98613× 10−14 × T 4

0 Mpc−2 . (3.14)

3.3.3 Radiation density for massless neutrinos

Massless neutrinos follow Fermi-Dirac statistics with neutrino temperature Tν . The

distribution function is given by

nν(ν) dν = 8πν2 dν
ehν/kBTν + 1 . (3.15)

We can calculate the radiation density of the massless neutrinos as

ρ0,νc
2 =

∫ ∞

0
hνnν(ν) dν =

(7
8

)
aBT

4
ν . (3.16)

For relating the temperatures between photons and neutrinos, consider the era

before neutrino and photon decoupling. In that ultra high energy regime, because

photons and neutrinos were coupled, the medium in which they existed had a fixed

temperature. Other species in the medium were electrons (2 spin states), positrons (2

spin states), neutrinos (1 spin state for each of the three generations), and antineutrinos

(1 spin states for each of the three generations). Shortly after the photon and neutrino
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decoupling, the temperature drops below the electron mass, and the forward reaction

e+ +e− ←→ γ+γ (annihilation) becomes strongly favored. This heats up the photons.

We can assume that this entropy transfer did not affect the neutrinos because they

were already completely decoupled. Using entropy conservation of the electromagnetic

plasma, we can calculate the change in the photon temperature before and after e±

annihilation. This gives [47]

Tν
T0

=
( 4

11

)1/3
.

The neutrino density is related to the photon density by

ρ0,ν = Neff

(7
8

)( 4
11

)4/3
ρ0,γ ,

where Neff is the effective number of neutrinos. Theoretically, there are 3 neutrino

families. However, due to non-instantaneous decoupling and QED effects, etc., the

effective neutrino density will be slightly higher then this value. This can be accounted

for by considering Neff > 3. Considering a general framework for neutrino decoupling,

it can be shown that for non-instantaneous neutrino decoupling, Neff ≈ 3.034. In

addition, the QED effects contribute about ∆Neff ≈ 0.011. Assuming these two effects

can be added linearly, the final value of Neff ≈ 3.045 [48, 49, 88, 58, 54, 117].

Therefore, the third term in Eq. 3.10 can be calculated as

Ω0,νH
2
0 = ρ0,ν

ρcr
H2

0 = Neff
7
8

( 4
11

)4/3 aB
c2ρcr

T 4
0 = 1.1324×Neff×10−14×T 4

0 Mpc−2. (3.17)
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3.3.4 Radiation density for massive neutrinos

In the standard model of particle physics, neutrinos are massless. However, different

experiments point toward a small nonzero mass for the neutrinos. For massive neutrinos,

the Fermi-Dirac distribution function contains a mass term, and it is not analytically

integrable. Therefore, to get the density ρνm at any given redshift, the distribution

function must be integrated numerically.

Assuming that all the neutrino species have equal mass, the mass of the neutrinos

is given by

mνm = ρ0,νm

Neffn0,νm

= Ω0,νm

Neff

ρcr
n0,νm

, (3.18)

where Neff is the effective number of neutrinos. ρ0,νm and n0,νm are the massive neutrino

density and number density at the present time, respectively. ρcr is the critical density.

The neutrino number density can be calculated by integrating the Fermi-Dirac

distribution function:

nνm = 8π
h3

∫ ∞

0

p2dp
exp(
√
p2c2 +m2c4/kbTνm) + 1)

. (3.19)

For neutrinos, pc≫ mc2, and we can ignore the term mc2 in the above equation. This

simplifies to

nνm = 8π
h3

∫ ∞

0

p2dp
exp(pc/kbTνm) + 1 = 8π

h3c3k
3
bT

3
νm

∫ ∞

0

ξ2dξ
eξ + 1 = 8πc3

h3 k3
bT

3
νm
ζ(3)Γ(3) ,

(3.20)

where ζ(3) is the Riemann Zeta function and Γ(3) is the Gamma function. Γ(3) = 2! =

2.
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The density and pressure of massive neutrinos at any given redshift can be written as

ρ = 8π
h3c3k

4
BT

4
νm

∫ ∞

0
q2f(q)ϵ(q) dq , (3.21)

P = 8π
h3c3k

4
BT

4
νm

∫ ∞

0
q2f(q)q

2

3ϵ dq , (3.22)

where q = apc and,

ϵ = a

kBTνm

√
m2
νm
c4 + (pc)2 . (3.23)

Here, in Eq. 3.22 the factor of 3 comes because we consider 3 spatial dimensions1.

Simple rearrangements of the above equations give us the massive neutrino density

and pressure in terms of the massless neutrino density, as

ρ =
(7

8

)
aBT

4
ν ρdl =

(7
8

)
aBT

4
0,νa

−4ρdl = 7
8

( 4
11

)4/3
aBT

4
0 a

−4ρdl , (3.24)

P =
(7

8

)
aBT

4
ν pdl =

(7
8

)
aBT

4
0,νa

−4Pdl = 7
8

( 4
11

)4/3
aBT

4
0 a

−4Pdl . (3.25)

Here, ρdl and pdl are dimensionless density and pressure and are expressed as

ρdl = 1
Υ

∫ ∞

0
q2f(q)ϵ(q) dq , (3.26)

Pdl = 1
Υ

∫ ∞

0
q2f(q)q

2

3ϵ dq . (3.27)

1For an ideal gas, the pressure can be found by nmv2/3. n is the number density of the gas
molecules, v is the velocity, and m is the mass of each molecule. The factor of 3 arises because
we have considered 3 spatial dimensions and we consider that the velocity distribution of the gas is
isotropic, i.e. v2

x = v2
y = v2

z = v2/3. Eq. 3.22 can also be derived in a similar way, where q corresponds
to the momentum.
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Figure 3.3: Dimensionless neutrino density ρDL (top) and pressure pDL (bottom),
given by Eq. 3.26 and Eq. 3.27, respectively, for different massive neutrino density
parameters. For reference, the massless neutrinos are shown by the dark blue curve.
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where Υ = 7
8
π4

15
2. In Fig. 3.3, we plot the dimensionless density and pressure for massive

neutrinos for different density parameters, Ωνm (note that ∑mνm/93.14eV = Ωνmh
2,

where h is the the Hubble parameter in units of 100 km/s/Mpc [89]. In the early

Universe, where the temperature is high, this inequality goes the other way pc≪ mc2,

the neutrinos behave like massless particles and ρdl → 1 and Pdl → 1
3 . However, later,

where mc2 dominates, the massive neutrinos start behaving like matter particles and

Pdl → 0 and ρdl ∝ a, i.e. the actual density of the massive neutrinos goes as a−3.

3.3.5 Contribution from dark energy

The last term in Eq. 3.10 is the contribution from the dark energy. We can use

the approximation Ω0,d ≈ 1 − Ω0,m (since Ω0,γ, Ω0,ν , Ωνm are of the order of 10−5).

For a ΛCDM model, the equation of state for dark energy is wd = −1. However,

several dark energy models have been proposed over the years based on a single scalar

field, a mixture of multiple scalar fields (e.g. quintessence [112], K-essence [16, 33, 17],

tachyon [106, 18], and dilatonic models [67]), massive vector fields [70, 25], etc. For

different dark energy models, the equation of state for dark energy may vary as a

function of the scale factor, i.e. wd(a). In such cases we can write the generalized form

of Ωd as

Ωd = Ω0,d exp
(
− 3

∫ a

1

da
a

[1− w(a)]
)
. (3.28)

CMBAns is capable of handling both constant wd or varying equation of state, wd(a),

models of dark energy. Presently, there is tension between the Hubble parameter

measured using the CMB (Planck data) and using local measurements (supernova
2Note that for calculating Υ we need the Bose-Einstein integration formula,

∫∞
0

ξ3dξ
eξ+1 = π4

15 .
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Figure 3.4: Fractional change in the Hubble parameter (f(z) = ∆H(z)/HΛ(z)) is
shown here. We try to keep the distance to the last scattering surface to be constant.
At low redshift we see a bump feature and at high redshift we see a dip feature.

data). The CMB-derived value is lower than the local measurements. Astronomers

are trying to model the Hubble parameter as a function of redshift and modify the

dark energy accordingly. In CMBAns, we have added modules which allow users to

provide the Hubble parameter as a function of redshift using a Matlab-GUI input.

CMBAns translates the Hubble parameter into the equation of state of dark energy

[42] and calculates the resulting CMB power spectrum. In addition, there is the

integrated Sachs-Wolfe (ISW) effect that is not part of the primordial power spectrum

but it can cause the CMB power spectrum to appear uneven. It is caused by CMB

photons traversing a time-varying linear gravitational potential, making the CMB

gravitationally redshifted. CMBAns provides the primordial, late time (ISW) and the

interference term between the primordial and late time ISW, along with the full power

spectrum to show the effect of the late time expansion history of the Universe on the

CMB power spectrum.
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Fig. 3.2 shows the variation of da
dτ as a function of scale factor for different values

of Ωc and H0 for the standard ΛCDM model. The conformal time between two given

redshifts can be calculated by numerically integrating Eq. 3.10. For various dark energy

models the shape of the CMB power spectrum changes. In Fig. 3.4 and Fig. 3.5

we demonstrate the special feature of CMBAns where we can adjust the deviation in

the Hubble parameter to be different from the standard ΛCDM Hubble parameter

(f(z) = H(z)/HΛ(z)) as a function of redshift using a Matlab GUI input. The deviation

that we have selected for this illustration is shown in Fig. 3.4. We try to keep the

distance to the last scattering surface to be constant. The temperature power spectrum

that we get for this particular deviation of Hubble parameter is shown in Fig. 3.5. An

interesting fact for such kind of deviation is that the ISW part provides a very small,

sometimes even negative, contribution to the CTT
l . For this particular illustration, we

have not considered any re-ionization. This is because the purpose of the illustration

is to show the particular form of the late time ISW effect, which is not a well known

phenomenon. As the polarization part doesn’t have any ISW contribution, there will

be no such effect on the polarization power spectra [42]. Without the GUI input,

exploring such a model would have been immensely difficult.

3.4 Recombination and Reionization

For calculating the baryon sound speed, optical depth, and visibility function,

we need to calculate the recombination and the reionization process very accurately.

CMBAns provides various functions for calculating the recombination, including the Saha

equation, the Peebles equation, recfast, or CosmoRec method.
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3.4.1 Saha Equation

The Saha equation provides a very rough estimate of the recombination epoch. It

assumes the recombination reaction p+ e− ←→ H + γ is fast enough that it proceeds

near thermal equilibrium, i.e. it ignores the expansion of the Universe. According to

the Saha equation,

nH
x2
e

1− xe
=
(
kBmeTb

2πh̄2

)3/2

e−B1/kBTb , (3.29)

where xe is the hydrogen ionization fraction. nH is the number density of the hydrogen

atoms, i.e. nH = n1s+np, where n1s and np are the number density of neutral hydrogen

and ionized hydrogen, respectively. B1 = mee
4/(2h̄2) = 13.6 eV is the ionization

potential of the hydrogen atom. Tb is the baryon temperature.

The hydrogen number density can be calculated as

nH = nb (1− YHe) = ρb
mH

(1− YHe) = 3
8πGΩ0,ba

−3H2
0

(1− YHe)
mH

, (3.30)

where YHe is the helium fraction after Big Bang nucleosynthesis. In Fig. 3.6 we show the

recombination result using the Saha equation. The plot shows that the recombination

of hydrogen is almost instantaneous. For the helium recombination, we separately use

the Saha equation, given by Eq. 3.37.

3.4.2 Peebles’ Recombination

Peebles’ equation provides a very accurate estimate of the recombination history

of hydrogen. The calculations are done using effective three-level atom calculations.

Peebles’ formalism is based on the assumptions that
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• Direct recombinations to the ground state of hydrogen are very inefficient: each

such event leads to a photon with energy greater than 13.6 eV, which almost

immediately re-ionizes a neighboring hydrogen atom. Electrons therefore only

efficiently recombine to the excited states of hydrogen, from which they cascade

very quickly down to the first excited state, with principal quantum number

n = 2.

• From the first excited state, electrons can reach the ground state n = 1 through

two pathways:

1. Decay from the 2p state by emitting a Lyman-α photon. This photon will

almost always be reabsorbed by another hydrogen atom in its ground state.

However, cosmological redshifting systematically decreases the photon frequency,

and hence there is a small chance that it escapes reabsorption if it gets

redshifted far enough from the Lyman-α line resonant frequency before

encountering another hydrogen atom.

2. Decay from the 2s to 1s state, which is forbidden with a single transition and

only possible using through a double transition. The rate of this transition is

very slow, 8.22 s−1. It is however competitive with the slow rate of Lyman-α

escape in producing ground-state hydrogen.

• Atoms in the first excited state may also be re-ionized by the ambient CMB

photons before they reach the ground state, as if the recombination to the excited

state did not happen in the first place. To account for this possibility, Peebles

defines the factor C as the probability that an atom in the first excited state

reaches the ground state through either of the two pathways described above

before being photo-ionized.



87

Accounting for these processes, the recombination history is then described by the

differential effect [107]

dxe

dt = −aC
(
α(2)(Tb)npxe − 4(1− xe)β(Tb)e−E21/T

)
, (3.31)

where

β(Tb) =
(
mekBTb

2πh̄2

)3/2

e−B1/kBTb α(2)(Tb). (3.32)

The recombination rate to excited states [86] is taken as

α(2)(Tb) = 64π
(27π)1/2

e4

m2
ec

3

(
kBTb
B1

)−1/2

ϕ2(Tb) , ϕ2(Tb) ≈ 0.448 ln
(
B1

kBTb

)
. (3.33)

This expression for ϕ2(Tb) provides a good approximation at low temperature. At

high temperature this expression underestimates ϕ2, but the amount is negligible. For

Tb > B1/kB = 1.58× 105 K, we set ϕ2 = 0.

C = Λα + Λ2s→1s

Λα + Λ2s→1s + β(2)(Tb)
(3.34)

where

β(2)(Tb) = β(Tb)e+hc/λαkBTb , Λα = 8πȧ
a2λ3

αn1s
. (3.35)

λα = 8πh̄c
3B1

= 1.21567 × 10−7m, is the wavelength for Lyman-α emission. Over-dot

represents the derivative with respect to the conformal time. Λ2s→1s is the rate of

hydrogen double transition from 2s to 1s. Λ2s→1s = 8.227s−1 = 8.4678× 1014Mpc−1.



88

Λ2s→1s/Λα = Λ2s→1sλ
3
αa

2n1s

8πȧ = Λ2s→1sλ
3
α(1− xe)a3nH
8πȧa = (1− xe)(1− YHe)

Λ2s→1sλ
3
α

8πȧa
a3ρm
mH

= Λ2s→1s

(
λ3
α

8π
3

8πG
1
mH

)
(1− xe)
ȧa

(1− YHe)Ωm0H
2
0

=
(
8.4678× 1014

)
×
(
8.0230194× 10−26

) (1− xe)
ȧa

(1− YHe)Ωm0H
2
0 . (3.36)

Similarly, β(2)(Tb)/Λα can be calculated using

β(2)(Tb)
Λα

= Tbϕ2(Tb)Ke−0.25Tion/Tb

(
8.0230194× 10−26

) (1− xe)
ȧa

(1− YHe)Ωm0H
2
0 ,

where K =
(

64π
(27π)1/2

e4

m2
ec

3

(
kB
B1

)−1/2 (mekB
2πh̄2

)3/2
)

= 5.13× 1018. Here, H0 is in km/sec/MPc

unit, and ȧ has units of MPc−1. The numerical values are converted to match these

units.

Helium Recombination

For calculating the He recombination, we use the Saha Equation [86].

nexn+1

xn
= 2gn+1

gn

(
mekBTb

2πh̄2

)3/2

e−χn/kBTb , (3.37)

where n ∈ (0, 1), and x0 = 1 − x1 − x2. The helium ionization fractions x1 =

n
(
He+

)
/n (He) and x2 = n

(
He++

)
/n (He), where n (He) is the total number density

of helium nuclei. ne is the free electron number density. g0 = g1 = 1 and g2 = 2.
χ1
kB

= T ion1 = 2.855 × 105 K and χ2
kB

= T ion2 = 6.313 × 105 K are the first and second

ionization temperatures of He.
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3.4.3 Recfast, CosmoRec

Peebles’ three-level atom model accounts for the most important physical processes.

However, these approximations may lead to errors on the predicted recombination

history at a level as high as 10%. This can also alter the temperature and polarization

power spectra up to 3− 5% at high multipoles. Several research groups have revisited

the details and proposed different models like recfast3[119, 120], CosmoRec4[35, 8, 36,

128, 57, 115], HyRec5[7] etc. These packages can calculate the recombination history

up to 0.1% accuracy. We use the available CosmoRec code in CMBAns as a default case.

However, users can choose to use the Saha, Peebles or recfast routines, which are

also available in CMBAns. The other packages can also be easily added to CMBAns or

run separately. In the later case, the ionization fraction, and baryon temperature can

be stored in a file as a function of scale factor and passed to CMBAns.

In Fig. 3.6, we show the ionization fraction computed by CMBAns for different

recombination methods. We use a smooth reionization, where we join an ionization

fraction before and after the reionization using a tanh(...) function. In Fig. 3.7, we

show the differences between recfast, recfast++ and CosmoRec recombination. This

small change in the ionization fraction can change the Cl at high multipoles.

3.4.4 Calculating baryon temperature

For calculating the ionization fraction during recombination, we need the baryon

temperature at each scale factor. The rate of change of the baryon temperature can

be calculated as (check Appendix ??)
3https://www.cfa.harvard.edu/~sasselov/rec/
4http://www.jb.man.ac.uk/~jchluba/Science/CosmoRec/Welcome.html
5https://cosmo.nyu.edu/yacine/hyrec/hyrec.html

https://www.cfa.harvard.edu/~sasselov/rec/
http://www.jb.man.ac.uk/~jchluba/Science/CosmoRec/Welcome.html
https://cosmo.nyu.edu/yacine/hyrec/hyrec.html
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Figure 3.7: Comparison between the ionization fractions from different modern
recombination routines: recfast, recfast++ and CosmoRec. For CosmoRec, we choose
the dark matter annihilation efficiency to be 10−24 eV/sec and all the other parameters
are set to default settings. Top: Ionization fraction is plotted with a linear scale to
show the He+ recombination. Bottom: Ionization fraction is plotted with a log scale
to amplify the effect at low redshift after the H+ recombination.
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Ṫb = −2
(
ȧ

a

)
Tb + 8π2

45
k4
B

c4h̄3
σTT

4
γ

me

fe (Tγ − Tb) , (3.38)

where σT is the Thomson scattering cross section. fe is given by

fe = (1− YHe)xtote
1− 3

4YHe + (1− YHe)xtote
. (3.39)

xtote is the total ionization fraction and is given by

xtote = xe + 1
4YHe

(x1 + 2x2)
(1.0− YHe)

. (3.40)

The constant term in Eq. 3.38 is given by 8π2

45
k4

B

c4h̄3
σT

me
= 5.0515 × 10−8K−4Mpc−1.

We can see that the baryon temperature depends on the ionization fraction of the

electrons. Therefore, we need to jointly evaluate the baryon temperature and ionization

fraction. The temperature of the photons at any era is Tγ = a−1T0γ. We can consider

Tb = Tγ before recombination (in the tight coupling era), and we can use it as the

initial condition for solving Eq. 3.38.

3.4.5 Baryon sound speed, optical depth and visibility

Calculating the baryon acoustic oscillations requires the speed of sound in the

plasma, cs. If we consider the plasma as a single fluid, then the pressure, density

and the temperature of the fluid will be related as Pb = kB

m
ρbTb. We can calculate the

sound speed in the plasma as
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c2
s = dPb

dρb

∣∣∣∣∣
adiabatic

= kBTb
m

(
1− 1

3
d(lnTb)
d(ln a)

)

= kBTb
mp

[
1.0− 3

4YHe + (1.0− YHe)xtote
](

1− 1
3

d(lnTb)
d(ln a)

)
.(3.41)

Here m is the mean molecular weight of the fluid, and mp is the mass of a proton6.

The mean molecular weight is calculated assuming the fluid contains free electrons, H,

H+, He, He+, and He++. Here, one should note that a more accurate formulation of

the sound speed was proposed by [75], and is used in CAMB and CLASS. We are in the

process of implementing it in CMBAns.

The optical depth from the present time (τ0) to any conformal time τ is given by

κ =
∫ τ0

τ
aneσTdτ =

∫ τ0

τ

(
H2

0c
2

8πG

)(
Ωb

mHa2

)
σT (1− YHe)dτ . (3.42)

The visibility function at any conformal time τ can be calculated as g = κ̇ exp(−κ).

In Fig. 3.8 we show the visibility function vs the scale factor. The visibility function

is nonzero only during the recombination and reionization processes. The change in the

visibility function is significantly smaller during reionization than during recombination.

To show both on the same plot, we multiply the reionization part by 100.

This is the end of my contribution to the original paper. For more details on the

rest of the calculation of scalar and tensor perturbations, and the corresponding scalar

and tensor power spectra, please refer to the original paper. Figures 3.9 and 3.10 show
6For all our calculations, we consider the mass of H and H+ = mp, and the mass of He, He+,

He++ = 4mp, i.e. we consider that the mass of electron is negligible and the mass of the proton and
neutron are the same.
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Figure 3.8: Plot of the visibility function (g = κ̇ exp(−κ)) as a function of the scale
factor. The green section of the plot is multiplied by 100 for displaying it on the same
plot.

the scalar and tensor power spectra for different types of initial conditions as calculated

by CMBAns.
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Figure 3.9: These plots show the unlensed CMB scalar power spectra (Cl) for adiabatic
(top row), baryon isocurvature (middle row), and CDM isocurvature (bottom row)
initial conditions. We use Ωbh

2 = 0.0223, Ωbh
2 = 0.1188, h = 67.74 km/s/Mpc,

ns = 0.9667, κ = 0.08. The plots show that the isocurvature CMB power spectrum
decays at high l.
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Figure 3.10: These plots show the unlensed CMB tensor power spectra (Ct
l ). We use

Ωbh
2 = 0.0223, Ωbh

2 = 0.1188, h = 67.74 km/s/Mpc, nt = 0.04, κ = 0.08. As CTE
l has

negative values we plot the y-axis in linear scale.
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3.5 Conclusion

CMBAns allows fast and accurate calculation of the CMB power spectrum for a flat

(Ωk = 0) background cosmology. The lensing calculations and the comparison of the

results with other Boltzmann packages like CAMB, CLASS etc. are not discussed in this

paper and are left for future work.

We use the C programming language for CMBAns. However, to make the program

object oriented, we use the concept of class from C++. A similar technique is also used

in CLASS code. Several stand alone modules, such as calculating the recombination

history, power spectrum evolution with different cosmological parameters, Bessel function

calculations, etc. are provided with the package. However, users are not limited to

what already comes with the program. The influx of precision CMB data means

that CMB modeling tools must evolve quickly. Modularity, an important feature of

CMBAns, offers a way to solve this problem. The modularity of CMBAns offers a lot of

flexibility and lets users quickly expand the functionalities of the package to include new

cosmological models by simply writing a new module or classes using the functionality

already provided in CMBAns.
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Chapter 4

Introduction to Intensity Mapping

In this chapter, we introduce neutral hydrogen (HI) intensity mapping. The

distribution of HI roughly follows the distribution of stars and galaxies, which

are biased tracers of dark matter. Instead of resolving individual galaxies with

traditional optical observations, intensity mapping performs low angular resolution

observations in three-dimensions and thus can in principle, rapidly survey very

large cosmological volumes from the present day to the dark ages. We will

also introduce the optimal region in k-space for avoiding strong foregrounds for

intensity mapping, called the EoR window.

In contrast to the CMB where the primary anisotropies arise from a thin shell

centered at z = 1100, intensity mapping can probe a much bigger volume of the

Universe. For the CMB, the number of modes with a comoving wave number k ≡ 2π/λ

between k and k+dk is dNCMB = πkdk [A/(2π)2], where A = D2dΩ, D is the comoving

distance to the surface of last scattering, and dΩ is the solid angle of the sky survey.

Intensity mapping has an advantage over 2-dimensional CMB mapping: it can also

sample the sky at different redshifts (along the line of sight) from the dark ages to the
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present day. The number of accessible modes is dN3D = 2πk2dk [V/(2π)3]. In practice,

foreground contamination and instrumental mode-mixing will restrict the number of

available modes. This is discussed later in the EoR window section. Nonetheless, 3D

intensity mapping can still provide access to a higher number of modes than 2D CMB

observation. The Planck measurement offers roughly NCMB
modes ∼ 2ℓ2

max ∼ 107 modes.

The 21 cm emission can access to ℓmax ∼ 106 and up to 104 independent redshift slices,

so in principle N21 cm
modes ∼ 1016. Figure 4.1 compares the number of available modes for

different sky surveys, including the CMB, galaxy surveys, and 21 cm surveys.

4.1 The Inhomogeneous Universe

In the previous chapter, we have shown how a perfectly homogeneous Universe

evolves, with small perturbations in the early Universe leaving traces as anisotropy in

the CMB signal. These perturbations later grow to form structures in the Universe.

We can observe large inhomogeneities in our local Universe, such as galaxy clusters,

groups of galaxies, galaxies, and voids that form the cosmic web. On smaller scales, we

have different galactic components, galaxy halos, interstellar medium, stars, planets,

etc. As stated in the previous chapter, the very early Universe and the Universe at the

time of the CMB were much more homogeneous, with average relative inhomogeneities

of ∼ 10−5. On the contrary, in our local Universe, the average relative inhomogeneities

is several orders of magnitude higher, with the typical relative inhomogeneity necessary

to form a dark matter halo being around 200. In order to understand structure

formation, we will need to consider inhomogeneities in the primordial density field.

The primordial inhomogeneities are not well understood, but most inflationary models

assume a Gaussian random primordial field, which is consistent with currrent observations
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Figure 4.1: The number of available modes, N, within a k bin of width ∆k =
k/10 centered on k for different cosmological surveys. The thick dashed grey line
(LRG) corresponds to the spectroscopic sample of SDSS. The thick solid line (HRG)
corresponds to a future spectroscopic survey at 2.5 < z < 3.5 covering 1000 square
degrees with a co-moving galaxy density equal to the LRG sample. The thick dark
line corresponds to a CMB data set with 65% sky coverage. The thin lines show the
number of modes accessible in a 21 cm survey (including the constraints by foreground
removal) covering 65% of the sky within a redshift range spanning a factor of 3 in (1
+ z), and centered on z = 1.5, 3.5 and 6.5. Figure from Loeb & Wyithe (2008) [84]

.
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[5]. These random Gaussian initial conditions eventually grow into the non-linear

structures that we are currently seeing in the local Universe.

4.1.1 Linear Perturbation Theory

We will discuss the time evolution of the matter density field using linear perturbation

theory. We define the matter overdensity field as

δ(x, t) = ρ(x, t)
ρ̄(t) − 1 (4.1)

in which ρ(x, t) is the matter field density at x and time t, ρ̄ is the average matter

field density over all space. We can see that the overdensity field has to satisfy −1 ≤

δ(x, t) <∞. We can treat δ as a perturbation since it is small at early times and large

scales.

To describe the evolution of the matter overdensity field δ(x, t), we will need a

few assumptions. First, the dark matter only interacts with other types of matter

gravitationally. Second, the scales are smaller than the Hubble horizon (λ ≪ H−1)

beyond which general relativity effects can become significant. Third, we will use the

Newtonian expansion, i.e. the peculiar velocities of the particles are not relativistic

(vp ≪ c). This means the dark matter is cold, so it is massive enough that it is slow

moving, as opposed to warm or hot dark matter. Lastly, we assume a matter-dominated

Universe where Ωm = 1

For a perfect fluid, the continuity, Euler’s and Poisson’s equations in terms of δ(x, t)

can be written as
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δ̇ + 1
a
∇ · v = 0

v̇ +Hv + ∇P
ρa

+ 1
a
∇Φ = 0

∇2Φ = 4πGa2ρ̄δ,

(4.2)

where Φ is the gravitational potential, P is the pressure, and the spatial derivatives

are taken with respect to the comoving coordinates x. The three equations above can

be combined into one second-order differential equation in δ(x, t):

∂2δ

∂t2
+ 2H∂δ

∂t
− 4πGρ̄δ = ∇

2P

ρ̄a2 . (4.3)

Assuming that the fluid is pressureless, this equation becomes

∂2δ

∂t2
+ 2H∂δ

∂t
= 4πGρ̄δ. (4.4)

The term on the right is the gravitational source term, and the second term on

the left is a friction term that describes the growth of perturbations due to Hubble

expansion. For linear perturbations, we can assume

δ(x, t) = D(a)δ0(x), (4.5)

where δ0(x) is the initial overdensity field, and D(a) is the linear growth factor. In the

matter dominated era, the solution for a given initial field is given by two independent

growth factors:

D+(t) ∝ a(t),

D−(t) ∝ a(t)−3/2,

(4.6)
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where D+(t) and D−(t) are the growing and decaying modes, respectively. The final

solution is a linear combination of those two modes:

δ(x, t) = A(x⃗)D+(t) +B(x⃗)D−(t). (4.7)

In the full ΛCDM Universe where Ωm < 1, the linear growth factor is given by:

D+(z) = 5
2ΩmH(z)

∫ ∞

z

1 + z

H(z)3 dz. (4.8)

The solution describes how overdense regions (δ > 0) will become more overdense, and

the underdense regions (δ > 0) will become more underdense. The linear perturbation

breaks down when δ becomes larger than 1.

4.1.2 Correlation function

The perturbation theory cannot predict where the overdense regions are, but they

can predict how matter clusters together. In order to model the clustering structure of

observed matter, with tracers being galaxies or gas, we will use the correlation function

of the overdensity field, which is assumed to be a Gaussian random field with zero mean.

We need a correlation function to describe and measure the density perturbations as

a function of their separation. The correlation function ξ(r) is defined as the excess

probability of finding a pair of galaxies at a given separation r12 = |x1 − x2|:

dP = n2δV1δV2 [1 + ξ (r12)] , (4.9)

where n is the average number density and δVi is the volume element. The correlation

is invariant to translations (independent of x) because of homogeneity and rotations
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(independent of the direction of r12) because of isotropy, so ξ must only depend on the

relative separation r12. The two-point correlation function is defined as

ξ(r12) = ⟨δ(x1)δ(x2)⟩. (4.10)

The majority of autocorrelation information is contained in the two-point correlation

function. For highly non-linear structures, caused by deviation from random Gaussian

assumptions or non-linear gravitational collapse, we may need higher n-point correlation

function

4.1.3 Power spectrum

Similar to the CMB, to derive the power spectrum, we will work with the overdensity

field δ(x) in Fourier space. We define δ(k) to be the Fourier dual to δ(x) as follows:

δ(k) = F [δ(x)] =
∫
δ(x)eik·xd3x

δ(x) = F−1[δ(k)] = 1
(2π)3

∫
δ(k)e−ik·xd3k,

(4.11)

where k = 2π/λ. The power spectrum P (k) of the overdensity field is then defined as

⟨δ (k1) δ∗ (k2)⟩ ≡ (2π)3δ3
D (k1 + k2)P (k1) , (4.12)

where the average ⟨⟩, in theory, is done over multiple realizations of the Universe.

However, we only have one observed instance of the Universe. Therefore, similar to

the CMB, there is a fundamental uncertainty in the knowledge of the power spectrum.

This uncertainty is the cosmic variance. It can also be shown that the power spectrum

is a Fourier transform of the correlation function
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ξ(r) = 1
(2π)3

∫
P (k)e−ik·xd3k

P (k) =
∫
ξ(r)eik·xd3r.

(4.13)

We are only concerned about the magnitude k of k because of the isotropy assumption.

In reality, any sky survey will be done over a large but finite volume V of the Universe,

and equation 4.11 and 4.12 becomes:

δ(k) =
∫
V
δ(x)eik·xd3x

⟨δ (k1) δ∗ (k2)⟩
V

= δk1,k2P (k1) .
(4.14)

From the first equation, we see that the Fourier coefficient of the overdensity is

given by ak = δk/V . The second equation tells us that the power spectrum P (k) is the

product of the variance of Fourier coefficients with the survey’s volume. The variance

of Fourier coefficients varies as ⟨ak1ak2⟩ ∝ 1/V . This means the larger the survey’s

volume, the more samples we have of the smaller Fourier modes.

It is conventional in the literature to talk about the dimensionaless power spectrum

∆2(k) instead of the traditional power spectrum P (k):

∆2(k) = k3P (k)
2π2 (4.15)

where the Dirac delta becomes the Kronecker delta in the second equation. The density

of a sphere of radius R placed randomly in the Universe will be equal to the average

density of the Universe, so its average overdensity is zero, but the variance of the

overdensity is given by

σ2(R) ≈ ∆2
( 1
R

)
. (4.16)
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It follows that this variance increases as the radius R of the sphere gets smaller, since

∆2(k) is higher at large values of k (i.e. at smaller scales).

4.1.4 Linear matter power spectrum

From the previous section, it is shown that linear perturbation theory can describe

the evolution of the overdensity field in the matter dominated Universe. As described

in previous chapters and Figure 2.5, the Universe went through three phases: radiation-

dominated era during the early times, matter-dominated era after photon decoupling,

and the current dark energy dominated era. To describe the matter power spectrum

in each of these phases, we need to consider the interaction between matter and other

components such as radiation and dark energy and evolve the full fluid equation. All

of these components will contribute to structure formation. During the radiation-

dominated era, the baryons are tightly coupled to the photons and this prevented

the growth of structures. In addition, dark matter perturbations continued to grow

during this era. After recombination, baryons were attracted to the gravitational wells

created by dark matter overdensities and formed galaxies and large scale structures.

The perturbations due to the sound waves in the photon-baryon fluid leave an imprint

on the power spectrum.

We need to relate the matter power spectrum Pm(k) ∝ ⟨|δ(k)|2⟩ to the gravitational

potential perturbation power spectrum PΦ(k) ∝ ⟨|Φ(k)|2⟩. This is done by using the

Poisson equation to relate the gravitational potential and the matter overdensity field

as δ(k) ∝ k2Φ(k). Thus, the predicted power spectrum follows

Pm(k, z) ∝ kns , (4.17)
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where the spectral index ns is one of the main cosmological parameters in the ΛCDM

model. The value for ns from current Planck CMB experiment is 0.968 ± 0.006 [5], a

slight deviation from unity due to inflation.

We also need to consider the effect of the growth of the Hubble horizon (∝ H−1)

on different modes. At very early times, the relevant modes are outside the Hubble

horizon. As the modes enter the horizon, they will start to grow with growth rates that

depend whether we are in the radiation or matter dominated eras. This is characterized

by the transfer function T (k, z). The final linear power spectrum has the following form:

Pm(k, z) ∝ D2(z)T 2(k, z)kns . (4.18)

The shape of the linear matter power spectrum is very sensitive to cosmological

parameters. We can solve for the power spectrum by including all different cosmological

components using numerical Boltzmann codes such as CAMB [78], CLASS [24], or CMBAns

[39].

In Figure 4.2, we show the linear matter power spectrum at z = 0 obtained from

different cosmological probes, with the best fit model in solid black line [6]. We see that

most of the cosmological measurements over a wide range of scales, or wavenumber k,

agree very well with the theoretical prediction from the standard ΛCDM model. We

can also measure the power spectrum at redshifts other than z = 0 with galaxy redshift

surveys and weak gravitational lensing studies.

4.1.5 Galaxy power spectrum

In practice, we do not really observe the total matter power spectrum, which

contains information on baryons and dark matter together. Most astronomical observations
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Figure 4.2: Linear matter power spectrum at z = 0 inferred from different cosmological
probes with the best fit model (solid black line) and the impact of non-linear clustering
at z = 0 (dotted black line). Plot from Planck 2018 result [6].

observe the tracers of the underlying matter fields. These matter tracers are galaxies,

gas in emission or absorption lines in quasar spectra, etc. We do not yet know the

exact relationship between the tracers and the underlying matter field, but we can

follow a simple assumption that the galaxies’ power spectrum is proportional to the

matter power spectrum by a factor called the linear galaxy bias bg:

Pg(k, z) = b2
g(z)Pm(k, z). (4.19)

This linear approximation works well at large scales. However, at smaller scales, the

effect of non-linearity becomes important and this approximation no longer holds true.
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4.1.6 Redshift space distortions

According to Hubble’s Law, objects recede from us at speeds which are proportional

to their distance from us. In real observations, we usually measure the redshift of

astrophysical objects instead of the real space comoving coordinate x. In addition,

they also have peculiar velocities, which are the components of an object’s velocity

that deviate from the Hubble flow. If the object has a peculiar velocity that is pointing

toward us, we will measure a lower redshift and it would appear that the object is closer

to us than it actually is. The opposite is true when the object is moving away from us.

This Doppler shift causes a redshift-space distortion in which the spatial distribution

of galaxies appears distorted when their positions are plotted as a function of their

redshift rather than as a function of their distance.

On smaller scales (higher k modes), such as around dark matter halos, the effect of

the random peculiar velocities is more substantial. This randomness will decrease the

correlation between two points at these scales, so the power at high k is small. On the

contrary, the random peculiar velocities create less of an effect at larger scales (lower

k modes) and the overall flow of matter is more important, for example, the flow of

galaxies into overdense regions to form galaxy clusters. The two-point correlation is

thus higher at larger scales (low k) compared to smaller scales (high k).

Next, we need to know how the power spectrum is different in redshift space.

Differentiating the proper distance r(t) = a(t)x(t) with respect to time, we get

v(t) = dr(t)
dt = H(t)r(t) + a(t)dx

dt = H(t)r(t) + u(t), (4.20)
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where u(t) = a(t)dx
dt is the peculiar velocity field. In the radial direction, vz = Hrz +

uz = H(rz+uz/H), where ẑ points in the radial direction. We will use a new coordinate

system in redshift space that takes into account the peculiar velocity

s = r + uẑẑ/H. (4.21)

where the letter s denotes quantity in redshift space and the letter r denotes quantity

in real space. Using the continuity equation 4.2 and assuming the peculiar vector field

is curl-free, the velocity field has the form

vk = −iaH
k
fδk, (4.22)

where the growth rate f is defined by

f ≡ d ln δ
d ln a. (4.23)

The number of particles in both redshift and real space must be conserved. The

redshift space overdensity is related to the real space overdensity by

δs(k) =
(
1 + β(z)µ2

)
δr(k). (4.24)

where µ = k∥/k is the cosine of the angle between k and the line-of-sight direction,

β = f/b in which b is the bias factor of the tracer. All in all, the matter power spectrum

in redshift space is given by [66, 59]:

Ps(k, µ, z) =
(
1 + β(z)µ2

)2
Pr(k, z). (4.25)
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At smaller scales, non-linear effects becomes more pronounced. In addition, random

peculiar velocities along the line-of-sight on smaller scales flatten the power spectrum

in the radial directions. The galaxy distribution is elongated in the redshift space that

points directly back at the observer. This is known as the Fingers of God effect. A

Gaussian streaming model is used to account for this [59]:

F (k, µ,Σs) = e−(kµΣs)2
, (4.26)

where Σs is the streaming scale that describes the random peculiar velocities along the

line-of-sight direction which contribute to the suppression of the power spectrum at

smaller scales. Putting this altogether, the power spectrum with redshift has the form:

Ps(k, µ, z) =
(
1 + β(z)µ2

)2
F (k, µ,Σs)Pr(k, z). (4.27)

The redshift space power spectrum contains anisotropy, in contrast to the real space

power spectrum. This information can be used to measured the growth rate f . The

power spectrum can be decomposed into Legendre polynomials Lℓ(µ):

P (k, µ, z) =
∞∑
ℓ=0

Pℓ(k, z)Lℓ(µ)

Pℓ(k, z) = 2ℓ+ 1
2

∫ 1

−1
P (k, µ, z)Lℓ(µ)dµ.

(4.28)

The correlation function can then be expressed as

ξℓ(r) = iℓ

2π2

∫
k3d(log k)Pℓ(k)jℓ(kr), (4.29)

where jℓ is the spherical Bessel function of ℓth order. All the odd ℓ terms are zero.

Without the Fingers of God effect, the only nonzero terms are the ℓ = 0 (monopole),
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Figure 4.3: Line Intensity Mapping taking snapshot slices of the growth of structure
at different redshifts. Plot from the NASA/LAMBA archive.

ℓ = 2 (quadrupole), and ℓ = 4. With this effect taken into account, the higher order

even ℓ terms are no longer zero.

4.2 Hydrogen

Hydrogen is the most abundant element in the Universe, and we can study the

distribution of hydrogen as a tracer of matter clustering into galaxies, star formation,

and the phase structure of the interstellar medium. Following the decoupling of CMB

photons, the Universe was dark and transparent. There were few ionization sources

to create more photons, and the existing photons were free to propagate. This period

is know as the Dark Ages. Small quantum fluctuations from inflation generated seeds

for gravitational wells, or over-densities of matter. When these overdensities grew

sufficiently large, fusion turned on, thus creating stars and galaxies. This happens
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at redshift 700 < z < 20. Radiation from these new bright sources reionized the

hydrogen residing in the intergalactic medium (IGM). This era is referred to as the

Epoch of Reionization (EoR) (6 < z < 20). A timeline of this process is shown in

Figure 4.3.

The early Universe contains many phenomena which are not well understood. By

looking at the highly redshifted 21 cm emission from neutral hydrogen, we could further

understand the physics of the early Universe, such as the nature of dark matter, dark

energy and inflation. The 21 cm (or 1420 MHz) radiation comes from the transition

between the two levels of the hydrogen in the ground state, very slightly split by

the interaction between the electron spin and the nuclear spin, and we could use this

radiation to map out the distribution of the neutral hydrogen, which strongly correlates

with dark matter halos in the ΛCDM model. The 21 cm radiation penetrates the dust

clouds, and this is an advantage over observations in visible light. This tomographic

mapping of the redshifted hyperfine transition of neutral hydrogen (HI) is known as

intensity mapping, which has the potential to map out the large-scale structure of the

Universe over a wide redshift range.

Unlike the cosmic microwave background (CMB), which only provides a two -

dimensional map of the the last scattering surface, HI intensity mapping can in principle

be used to make three-dimensional maps of matter at all redshifts up to z ≈ 50, even

before galaxies formed, albeit with some complications in practice. By looking at the

collective emission from many galaxies or galaxy clusters without resolving individual

galaxies, HI intensity mapping can map the large scale structure. In addition, the

redshifted 21 cm line can be used to map the Universe at different redshifts by tuning

the receivers to a range of frequencies. At lower redshift, 21 cm tomography enables

intensity mapping of self-shielded gas within galaxies, allowing for precise measurements
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of baryon acoustic oscillations (BAO), which can be used as a standard ruler for

measuring cosmological distance. At higher redshifts, 21 cm tomography allows us

to probe the cosmic dawn, the time at which the first stars and black holes were

formed at the beginning of the Epoch of Reionization (EoR). Both the sky-averaged

21 cm brightness temperature and its fluctuations store important information about

these processes. In principle, 21 cm intensity mapping allows us to probe most of

the observable Universe from the dark ages until the present day, as shown in Figure

4.4. Furthermore, intensity mapping also complements CMB observation by mapping

the effect of gravitational lensing on the CMB. The gravitational lensing potential

can mix the E-modes polarization into B-modes. By mapping the deflection potential

with intensity mapping, we can derive an expectation for the lensed B-modes from the

measured E-modes and the transfer between E- and B-modes. In principle, the lensed

B-mode can be subtracted from the CMB polarization maps to search for B-modes

from gravitational waves with the hope to learn more about the inflationary period at

the very beginning of the Universe.

Observation of the HI distribution can constrain the history of the EoR, star

formation, galaxy assembly, and the statistical properties of large scale structure,

from which we can study the nature of dark energy, dark matter, and the inflationary

origin of the Universe. The power spectrum of intensity mapping contains cosmological

information on the matter distribution and helps us understand galaxy evolution by

tracing the HI content of galaxies at different redshifts and the scale-dependence of HI

clustering. The influx of astronomical data in the last decade has greatly increased

our understanding of these phenomena. Indeed, galaxy redshift surveys, such as LSST

(optical imaging), WFIRST (NIR imaging & slitless spectroscopy), and DESI (optical

spectroscopy), will characterize the nature of dark energy with very high precision.
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Figure 4.4: Plotted is a 2D representation of the observable Universe in which the
area is proportional to the comoving volume and the distance from the center increases
monotonically with distance from Earth. The volume that can be accessed using the
21 cm intensity mapping of neutral hydrogen is within the orange region and a little bit
of the dark ages. The outermost thin shell at z = 1100 is the CMB. The enclosed cyan
region is the survey volume of the CHIME and Tianlai 21 cm observatories. Figure
from [14]
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However, optical surveys are expensive to expand to a large volume. Additionally,

these experiments leave a lot of the post-reionization Universe with redshift z < 6

uncovered; the new technique of intensity mapping offers the capability to fill in this

void.

So far, the 21 cm signal has been detected with three intensity mapping instruments:

the Green Bank Telescope (GBT) [29, 127, 93], the Parkes Observatory [13] and CHIME

by cross-correlating intensity maps with galaxy redshift surveys.

4.2.1 The Epoch of Reionization

When the first galaxies were formed, they emitted ultraviolet (UV) radiation and

ionized the sourrounding IGM. As a consequence, the intermediate regions of the IGM

also became ionized and transparent to ultraviolet photons, which means that the

surrounding hydrogen could no longer radiate 21 cm emission. This era is referred to

as the Epoch of Reionization (EoR). This UV radiation continued to propagate beyond

the over-densities where it originated, creating large spherical bubbles. These bubbles

continued to grow until they overlapped with one another, and eventually they spread

through the whole IGM. What is left today is a fully ionized IGM with small pockets of

neutral gas residing in galaxies (HI clouds) or external to galaxies as part of intercloud

gas. However, the details of this process are still not known, such as when reionization

began, how long it took the IGM to fully ionize, and how reionization affected galaxy

formation.

Prior CMB observations have placed constraints on the beginning of reionization.

Since the CMB radiation is older (around 400,000 years after the Big Bang), it serves

as a backlight to the EoR. Using a model in which reionization was instantaneous, and

the optical depth can be translated into reionization redshift, WMAP constrained the
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Figure 4.5: Hydrogen spin-flip emission. Both electron and proton spins are 1/2,
so there are two possible states. The higher energy symmetric state (spins parallel)
can can spontaneously transition to the lower energy anti-symmetric state (spin
antiparallel), emitting a photon with wavelength 21 cm.

reionization redshift to zre = 10.6 ± 1.1 (Nine-year Wilkinson Microwave Anisotropy

Probe (WMAP) Observations: Final Maps and Results. 2014). Results from the

Planck satellite, which launched in 2009, constrained the redshift of reionization at

zre = 8.8+1.7
−1.4. (Planck 2015 results. XIII. Cosmological parameters.)

Observations of highly redshifted quasars can also place upper bounds on the

redshifts by which reionization is complete. Beardsly, Fan et al. (24) demonstrated

that reionization must be completed by zre ≈ 6. From observing a steep decline in

Lyman-α emitting galaxies, Choudhury et al. (17) set the reionization redshift in the

range 6 ≲ zre ≲ 8. Future deep optical and infrared galaxy surveys, such as the James

Webb Space Telescope, will allow us to conduct very sensitive studies to constrain

reionization.
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4.2.2 21 cm Intensity Mapping

The 21 cm emission is a very narrow spectral line and is created by the spontaneous

transition between the two energy levels of the hydrogen atom in the 1s ground state,

slightly split by the interaction between the nuclear spin and the electron spin, as

shown in Figure 4.5. This is known as the hyperfine structure. The splitting energy

is only 5.9 × 10−6 eV, only about four parts in ten million compared to the ground

state energy -13.6 eV. This spontaneous emission has an extremely small transition

rate of 2.9 × 10−15s−1, and a mean lifetime of the excited state of about 10 million

years. However, due to the sheer amount of hydrogen in the Universe, we can observe

this transition line.

By studying 21 cm intensity mapping, we can can a three dimensional, tomographic

map of the Universe. The advantages of 21 cm intensity mapping are numerous. First,

hydrogen makes up the majority of baryonic matter. Second, the hydrogen flipping

transition is very narrow and well understood. Third, the observed redshift of this

transition maps directly to the scale factor at the time of emission. With a model, this

redshift can be converted to a line of site distance.

The expected 21 cm brightness temperature is on the order of a few mK, whereas

the foreground signals can range from hundreds to thousands of Kelvin. It is difficult for

early generation telescopes to produce high quality 21 cm maps to see the individual

structures. However, we can we can infer the global properties of the 21 cm signal

via the power spectrum, which encodes the cosmological information in its shape.

Specifically, the 21 cm power spectrum allows us to measure the position of the BAOs,

which can be used as a standard ruler to tells us about the scale of the Universe vs

redshift. This in turn tells us about the time evolution of dark energy.
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The Fourier transform of the spatial 21 cm brightness temperature is defined as

T̃21(k) = F [δT21(r)] =
∫

d3rδT21(r)e−ik·r. (4.30)

where the integral is over all space, and k is the three dimensional wavenumber Fourier

dual to the position vector r. The 21 cm power spectrum is defined as

〈
T̃21(k)T̃ ∗

21 (k′)
〉
≡ (2π)3δD (k− k′)P21(k), (4.31)

where the angle bracket ⟨⟩ denotes the ensemble average over many realizations of the

Universe, and δD is the Dirac delta function, but in reality we can observe only one

realization of the Universe. Since the Universe is isotropic, the power spectrum only

depends on the magnitude k (P21(k) −→ P21(k)). In practice, we decompose k space

into bands in k∥ and k⊥, and we can average the measured power spectrum in spherical

shells along the line of sight axis in the full three-dimensional k space.

To extract information from 21 cm intensity mapping, we need to compare the

observational data with the theoretical predictions. To linear order, the amplitude and

shape of the 21 cm power spectrum at redshift z is proportional to the product of the

HI bias bHI(z) and its cosmic abundance ΩHI(z) = ρHI(z)/ρc(z = 0), where ρHI(z) is

the mean HI density at redshift z and ρc(z = 0) is the critical density at z = 0. The

assumption here is that HI acts as a biased tracer of the dark matter distribution, and

the 21 cm power spectrum is related to the linear matter power spectrum as follows

[131]:

PHI(k, z, µ) = T̄b(z)2
[(
bHI(z) + f(z)µ2

)2
Pm(k) + PSN(z)

]
, (4.32)
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where bHI(z) is the HI bias factor, PSN is the HI shot noitse, T̄b is the mean brightness

temperature increase relative to the CMB and is given by [22, 131]:

T̄b = 189 mK H0(1 + z)2

H(z) ΩHI(z)h (4.33)

The meaning of the brightness temperature will be discussed in the next section.

4.2.3 HI spin temperature

As discussed in the previous section, we calculate the power spectrum with the

brightness temperature, which is the difference in brightness temperature between the

21 cm signal and the CMB. We are also interested in the intrinsic temperature of

the neutral hydrogen gas. The intensity of the 21 cm radiation is characterized by

its excitation, or spin temperature Tspin. To detect the 21 cm emission of a neutral

hydrogen cloud, its temperature must be out of equilibrium with the background CMB

(see Figure 4.6). The neutral hydrogen cloud will contribute a net emission if Tspin >

TCMB or a net absorption if Tspin < TCMB. To quantify the amount of background

radiation being transmitted through the cloud, we need to start with the radiative

transfer equation:

dIv
dτv

= −Iv +Bv(Tspin), (4.34)

where Iν is the specific intensity (or brightness), which is the energy carried by the

radiation per unit area, frequency, solid angle, and time from a specific direction n̂ and

has the unit Janskys per steradian (Jy/str). τν is the optical depth through the cloud

and Bν is the Planck distribution function. We can also convert Jy/str to mK by
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Figure 4.6: The CMB passing through a cloud of neutral hydrogen gas with spin
temperature Tspin and emerging with the brightness temperature Tb which we measure.

1mK = 10−23 c
2str

2ν2kB
Jy/str. (4.35)

Integrating the above equation from 0 to τν to solve for the specific intensity, we

get

Iν = ICMB
ν e−τν +Bν(Tspin)(1− e−τν ). (4.36)

A specific intensity Iν has a brightness temperature Tb, which is the equivalent

blackbody temperature that would produce the same specific intensity Iν = Bν(Tb).

In the Rayleigh-Jeans low energy limit, the brightness temperature is related to the

specific intensity by

Bν = 2ν2kBTb
c2 −→ Tb(ν) = Iνc

2

2kBν2 . (4.37)

In terms of brightness temperature, equation 4.36 becomes

Tb(ν) = TCMB(ν)e−τν + Tspin
(
1− e−τν

)
. (4.38)

Therefore, to measure the brightness temperature, we need to know the optical

depth τν and the spin temperature Tspin. The first exponential term e−τν gives the
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transmission probability of the background CMB radiation, and the term (1− e−τν )

gives the emission probability of the 21 cm photons in the HI cloud. In the special

case where Tspin = TCMB, because absorption equals emission at every frequency, the

brightness temperature is exactly the CMB temperature, and this does not reveal any

information about the cloud.

The brightness temperature at redshifts other than z = 0, due to the Hubble

expansion, is

Tb(ν) = TCMB(ν)
(1 + z) e

−τν + Tspin

(1 + z)
(
1− e−τν

)
, (4.39)

where τν is the optical depth of the 21 cm frequency. We need to compute this optical

depth τν , which is the absorption coefficient integrated along the proper length of the

photons’ path. The hyperfine flipping transition is determined by the absorption rate

of 21 cm photons (|0⟩ → |1⟩ transition), characterized by the Einstein coefficient B01,

and the stimulated emission of 21 cm photons (|1⟩ → |0⟩ transition), characterized by

the Einstein coefficient B10. These Einstein coefficients are given by [116]:

IνB01 = g1

g0
B10Iν

IνB10 = A10
λ2Iν
2hν10

(4.40)

where ν10 = 1420.4 MHz is the frequency of the hyperfine 21 cm transition, and

A10 = 2.85× 10−15 s−1 is the spontaneous emission rate. The absorption cross section

of the 21 cm line is

σν ≡ σ01ϕ(ν) = 3c2A10

8πν2 ϕ(ν), (4.41)
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where ϕ(ν) is the line profile of the 21 cm transition, which includes natural, thermal,

turbulent, and velocity broadening. It is normalized such that
∫
ϕ(ν)dν = 1. Integrating

this over the line of sight from the observer to the source to get the optical depth:

τν =
∫
σ01

(
1− e−E10/kBTspin

)
ϕ(ν)n0 ds, (4.42)

where n0 is the number density of the lower energy singlet state and ds is the proper

length element and can be converted to the redshift by

ds = adr = cdt = c
a

da/dt
da
a

= − cdz
(1 + z)H(z) . (4.43)

The result of the integral for the 21 cm optical depth is

τν0 = 3
32π

hc3A10

kBTspinν2
0

xHInH
(1 + z)

(
dv∥/dr∥

)
≈ 0.0092(1 + δ)(1 + z)3/2 xHI

Tspin

[
H(z)/(1 + z)

dv∥/dr∥

]
,

(4.44)

where (1 + δ) is the baryon fractional overdensity and dv∥/dr∥ is the gradient of the

proper velocity along the line of sight. Another unknown quantity in Equation ?? is

the spin temperature. For a system in thermal equilibrium, the relative occupation of

two different energy states is given by

n1

n0
= g1

g0
exp −∆E

kT
, (4.45)

where n1 and n0 are the number densities of electrons in the higher energy symmetric

state and the lower energy symmetric state, respectively. In the context of 21 cm

emission, this equation reduces to
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n1

n0
= 3 exp

(
− T∗

Tspin

)
, (4.46)

where T∗ = 0.0681 K is the temperature corresponding to the 21 cm emission. We

see that the spin temperature is related to the ratio of the number densities between

the two energy levels, and this tells us about the intensity of the 21 cm radiation

from a cloud of neutral hydrogen. However, we need to take into account different

background radiation being transmitted through the cloud and quantify the emission

and absorption within the cloud. Three main processes determine Ts: (1) The spin

temperature Ts is coupled to the IGM kinetic temperature Tk, (2) coupling with high

energy radiation (Lyman-α photons), and (3) absorption and induced emission of CMB

photons. The spin temperature can be written as

Tspin = TCMB + ykTk + yαTα
1 + yk + yα

, (4.47)

where yk and yα are the kinetic and Lyman-α coupling terms, respectively. yk is

determined by collisional excitation with other hydrogen atoms, free electrons, and

protons in the IGM. yα is determined by the Lyman-α pumping mechanism (Wouthuysen–Field

coupling), as neutral hydrogen absorbs and then re-emits Lyman-α photons, and may

enter either of the two spin states. Tspin needs to be different from TCMB in order for

the 21 cm to be detected. This formula can be used to calculate the spin temperature,

and the strength of each coupling term can be found in most physics textbooks.

Figure 4.7 shows the the evolution of spin, CMB, and gas temperatures as a function

of redshift. At early times (redshift beyond z ≈ 200), the spin temperature is coupled

to the kinetic temperature of the hydrogen gas in the IGM and the CMB, and they

all fall off as (1 + z). During this period, the IGM gas is coupled to the CMB photons
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Figure 4.7: The evolution of spin, CMB, and gas temperatures (in red, blue, and green,
respectively) as a function of redshift. Figure from [139].

via Compton scattering. At redshift z ≈ 200, the gas temperature briefly decouples

from the CMB temperature and decreases adiabatically as (1 + z)2 since the gas is

non-relativistic. This is due to the Hubble expansion of the Universe and there are

no heating sources. Once ionizing sources such as X-ray binaries form, the gas starts

heating up at redshift below 30.

The spin temperature behavior is more complex. At redshift beyond 100, it is

still coupled to the gas temperature due to electron collisions. However, the strength

of this coupling decreases due to Hubble expansion, and the spin temperature trends

toward the CMB temperature, creating an absorption region. At redshift below 15, the

ionizing sources couple the spin temperature to the gas again and Tspin ≫ TCMB. In

the middle where there is a dip, there are two possible scenarios. In the first scenario,

the spin temperature couples with the gas temperature as it heats up beyond the

CMB temperature (red solid line) in Figure 4.7. This is mostly due to emission. In

the second scenario, the spin temperature couples with the gas temperature before it
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reaches the CMB temperature (red dashed line). This is due to initial absorption and

later emission.

In actual observations, we are interested in the deviation of the HI signal from the

CMB temperature, and the differential brightness temperature ∆Tb ≡ Tb − TCMB is

what we need:

∆Tb = (28 mK) (1 + δ)xHI

(
1− TCMB

Tspin

)(
Ωbh

2

0.0223

)√(1 + z

10

)(0.24
Ωm

) [
H(z)/(1 + z)

dv∥/dr∥

]
(4.48)

where h is the Hubble constant, Ωm and Ωb are the matter and baryon density parameters,

and (1 + δ) is the fractional baryon overdensity. The term (1− TCMB/Tspin) is positive

when the HI cloud is in emission and negative when it is in absorption. Usually we

write Tb instead of ∆Tb when the context is understood (i.e. an increase in brightness

temperature over the CMB). From this equation, we see that at high redshifts when

the fraction of neutral hydrogen is high (xHI is close to unity), ∆Tb probes the density

fluctuation. On the other hand, at lower redshift, ∆Tb probes the neutral and ionized

regions. Figure 4.8 shows the time evolution of the brightness temperature from the

dark ages to the end of the ionization epoch. .

4.2.4 HI in galaxies halos

One prominent analytical model that describes the dark matter distribution is the

halo model. It assumes that dark matter is partitioned over halo building blocks,

which are spherical and have a density distribution that depends only on halo mass.

In this model, dark matter halos permeate and surround individual galaxies as well as

clusters of galaxies (see Figure 4.9). Dark matter halos above a certain mass threshold
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Figure 4.8: Reionization history: Time evolution of the brightness temperature from
the dark ages through the end of the reionization epoch. The brightness temperatures
in the dark ages and when heating begins are negative due to absorption. When the
first galaxies form, the spin temperature decouples from the gas temperature. The
brightness temperature is positive at z ≈ 13 due to X-ray heating and then decreases
due to reionization and finally becomes zero when most of the hydrogen is ionized.
Figure from [111].
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Figure 4.9: The large-scale structure from a ΛCDM gravo-magnetohydrodynamical
simulations named Illustris at different scale from left to right [98]. The color indicates
the dark matter density, with the bright spots being central or satellite galaxies.

have at least one central galaxy at the center. Higher mass halos contain additional

satellite galaxies within the same halos. The clustering of galaxies coming from pairs

of galaxies in separate halos (typically on the scale of 1-2 Mpc/h) is called the 2-halo

term. Clustering of galaxies coming from the same central parent halo (on a scale less

than 1 Mpc/h) is called the 1-halo term.

The halo model can predict the abundance and distribution of HI and the shot-

noise. We will need a relationship between the total halo mass Mh and the total HI

mass inside the halo MHI, as well as the density distribution function of HI within each

halo ρHI(r|Mh) = ρ0 exp(−r/rs), where rs is the scale radius of the halo.

We assume that the amount of HI in a halo depends only on its mass, and the

relationship between MHI and Mh is as follows [131, 28]:

MHI (Mh) = M0

(
Mh

Mmin

)α
exp

(
−Mmin

Mh

)
, (4.49)
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where α is a scaling factor between the total HI mass MHI and the total halo mass Mh,

and Mmin is the minimum threshold mass cut-off for a halo to host HI. In addition, the

mass density of HI is given by

ΩHI = 1
ρc

∫ ∞

0
n (Mh)MHI (Mh) dMh, (4.50)

where n(Mh) is the halo mass function. The HI bias in the halo model is

bHI(z) =
∫∞

0 b (Mh, z)n (Mh, z)MHI (Mh, z) dMh∫∞
0 n (Mh, z)MHI (Mh, z) dMh

, (4.51)

where b (Mh, z) is the bias of halos of mass Mh at redshift z. The halo model for the HI

power spectrum at a given redshift is related to the 1-halo and 2-halo terms as follows

[105, 131]:

PHI(k) = PHI, 1-halo(k) + PHI, 2-halo(k)

PHI, 1-halo(k) = F 0
2 (k)

PHI, 2-halo(k) = P (k)
[
F 1

1 (k)
]2

Fα
β (k) ≡

∫ ∞

0
n (Mh) bα (Mh)

[
MHI (Mh)

ρ̄HI
uHI (k|Mh)

]β
dMh,

(4.52)

where uHI (k|Mh) is the normalized Fourier transform of the HI density profile and is

given by

uHI(k|Mh) = 4π
MHI(Mh)

∫ Rv

0
ρHI(r)

sin kr
kr

r2 dr. (4.53)

At k = 0, bHI = F 1
1 (k = 0), and this means at large scales the HI power spectrum

is mostly determined by the 2-halo term (the first term in Equation 4.32). In contrast,

the normalized HI density profile is constant at low k, so the 1-halo term acts as a
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constant contribution to the total HI power spectrum. The discrete nature of the HI

sources at the largest scales contribute to the shot noise PSN = F 0
2 (k = 0) of the power

spectrum in Equation 4.32. It has been shown that the shot noise is not a significant

contribution to the power spectrum, regardless of the parameters α,Mmin. This makes

the HI power spectrum a fundamentally high signal-to-noise ratio measurement, barring

other sources of noise. On the other hand, at high k, or smaller scale, the clustering

of HI is determined by the 1-halo term, or the HI density profile. Current intensity

mapping experiments can benefit from cross-correlation with galaxy surveys, such as

ALFAFA [56], which is an extragalactic HI survey at redshift 0, and SDSS [53], which

is an optical galaxy survey.

4.2.5 Foregrounds

Becase the 21 cm signal is notoriously weak, coupled with the fact that the foreground

is 105 times larger, this requires extremely sensitive instruments to observe it. For

extracting the 21 cm signal, we rely on the fact that the foreground emission is a

smooth function of frequency, while the 21 cm spectrum has structure arising from

the large scale distribution of matter along the line of sight. Instrumental effects can

introduce structure into the otherwise smooth foregrounds. Specifically, the angular

component of the antenna beam pattern is frequency dependent, and through a process

called mode-mixing, introduces frequency structure into the smooth foregrounds which

can be confused with cosmic 21 cm structure. In addition, even though the 21 cm

signal is unpolarized, the bright foreground is partially polarized, and Faraday rotation

in the interstellar medium creates additional spectral structure in the polarization

signal. Furthermore, frequency-dependent instrumental leakage of the Stokes Q, V,

U into I brings another type of complicated spectrum into the signal. Removing
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this mode-mixing effect requires a detailed understanding of the frequency-dependent

antenna beam pattern as well as the gain and phase of the instrument’s electronics

by calibration. (Shaw et al. 2015 2011.05946) show by simulation of the CHIME

interferometer that, in the presence of foreground, it is necessary to know that beamwidth

of the antennas to 0.1% and the electronic gain to 1% within each minute of observation

to recover the unbiased power spectrum of the HI signal.

The foreground wedge and the EoR window

Foreground cleaning will inevitably throw away some valuable information about

the sky and reduce the sensivity to the 21 cm signal. As we are determined to

measure the 21 cm power spectrum, we need to understand how the physical instrument

interacts with the foregrounds and 21 cm signal. There is a limited region of the

k⊥k∥ Fourier space that we can access. The lowest k⊥ mode is determined by the

shortest baseline of the interferometer, while the highest k⊥ mode is determined by

the longest baseline, as shown in Figure 4.10. Similarly, the upper limit for k∥ is set

by the spectral resolution of the array. The lower limit for k∥ is determined by cosmic

variance in theory, but in practice it is determined by bright and spectrally smooth

foregrounds which contaminate the lowest k∥. The foregrounds present in the 21 cm

EoR measurements are synchrotron emission from our own Milky Way galaxy, galactic

and extra-galactice free-free emissions, and point sources. These foregrounds are many

orders of magnitude brighter than the 21 cm signal. In addition, these sources are

spectrally smooth, so after the 3D Fourier transform, they only occupy a few low k∥

modes.
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Figure 4.10: A schematic of the EoR window in the k⊥k∥ Fourier plane. The
minimum and maximum k⊥ modes accessible are determined by the shortest and
longest baselines of the array, respectively. The maximum k∥ mode is set by the
frequency resolution of the array. The minimum k∥ is determined by cosmic variance
in principle, but in practice, it is determined by bright and spectrally smooth
foregrounds which contaminate the lowest k∥. These foregrounds out to higher k∥
in a characteristic shape called the foreground wedge. The complimentary region is
the EoR window, where a clean measurement of the 21 cm power spectrum is possible.
cite: https://arxiv.org/pdf/1404.2596.pdf
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The Foreground Wedge and the EoR window In radio interferometry, the

baselines that sample specific k⊥ have fixed absolute distances but these distances vary

in the uv-plane as they are measured in terms of wavelength. This frequency-dependent

baseline distances in the uv-plane introduce instrumental mode mixing. The effect is

that the spectrally smooth foreground power leaks into higher k∥, producing a wedge

shaped region as seen in Figure 4.10. As a result, most of the large astrophysical

foregrounds can be found in a wedge shaped region with k∥ < βk⊥ for an experiment-

dependent constant β. This is called the foreground wedge. The region outside of the

foreground wedge (also known as the “EoR window”; this same terminology is used for

observations in the post-EoR epoch.) remains mostly free of contamination and thus

provides the best opportunity for measuring the cosmological 21 cm power spectrum

during the Epoch of Reionization. The edge of the contaminated foreground wedge is

given by

k∥ = H0DcE(z)θ0

c(1 + z) k⊥, (4.54)

where E(z) =
√

Ωm(1 + z)3 + ΩΛ, and Dc is the co-moving line-of-sight distance, θ0

is the beam characteristic width. Equation from https://arxiv.org/pdf/1404.2596.pdf.

We see that the contaminated region is proportional to the baseline distance (or k⊥)

and bounded by a line with a slope proportional to θ0. In theory, the maximum is set

by the horizon (θ0,max = π/2), but in practice this is determined by the primary beam

of the array. In addition, real sources in the sky do contain some spectral structure, and

together with the frequency-depedent beam shape of the instrument, blur out the edge

of the foreground wedge. Therefore, merely looking in the EoR window does not ensure

that we are probing a region free of foreground signals. Foreground cleaning, together
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with a better understanding of the instrument’s beams and wedge mode mixing, are

essential to getting accurate measurements of the underlying HI signal.
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Chapter 5

Interferometry with the Tianlai

Pathfinder Array

Chapter 5 will introduce intensity mapping with the Tianlai Pathfinder Array,

which is an interferometric radio telescope designed to map the density of neutral

hydrogen in the post-EoR epoch. Inteferometry allows the use of multiple small

antennas instead of a large one. We first introduce the fundamentals of radio

interferometry. We will then describe the instrumental response, stability, calibration,

and the data pipeline for the Tianlai Dish Pathfinder Array. Finally, we discuss

future plans and forecast the level of HI that can be obtained with the array.

Some materials from this chapter can be found in the paper "The Tianlai Dish

Pathfinder Array: design, operation and performance of a prototype transit radio

interferometer" published in MNRAS in 2021 [135].
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5.1 Fundamentals of Radio Interferometry

Radio telescopes can observe neutral hydrogen by detecting its 21 cm electromagnetic

radiation. Traditional single-dish radio telescopes, such as the Green Bank, Parkes,

Arecibo, or FAST telescopes, use parabolic metal mirrors that focus the incoming

radiation into a radio receiver. The dish parabola coherently adds all electromagnetic

radiation coming from a given direction. The bigger the diameter of the dish parabola,

the higher is its angular resolution. Given the diameter of the dish is D, the resolution

scales as λ/D, where λ = λ0(1 + z) is the redshifted wavelength from the original λ0.

Since the radio wavelengths are long compared to optical signals, radio telescopes need

large dish diameters to achieve a fine resolution.

Instead of a large single dish parabolic reflector that combines the signal optically,

it is also possible to add the signals electronically. This class of telescopes is called

interferometers. Each interferometer consists of multiple smaller antennas, and signals

can be combined electronically to synthesize a dish whose aperture equals the largest

separation between individual dishes. This concept is known as aperture synthesis.

Since the signal from every pair of elements needs to be correlated, the total number

of correlations (auto and cross correlations) grows as N(N + 1)/2 ∼ N2.

The fundamental quantities measured by an interferometer are the visibilities. They

are the cross-correlation of electric fields from all pairs of antennas. The visibility

between antenna i and j, at frequency ν, is defined as

Vij(ν, τ) ≡ ⟨Ei(ν, τ)E∗
j (ν, τ)⟩t, (5.1)
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where the angle bracket denotes the time-average. The time dependence is due to

the rotation of the Earth, thermal noise, gain fluctuations, cable length contraction or

expansion, and so on. Most intensity mapping interferometers, like Tianlai, observe

the sky by drift-scanning, so the time average is taken over a period of time that is

small compared to the time over which the sky moves through the beam. Given the

sky intensity I(θ, ν) that depends on angular position and frequency, the response of

the interferometer can be expressed as

Vij(ν) =
∫
Aij(θ, ν)I(θ, ν)e−2πiν(ri−rj)·θ/c d2θ, (5.2)

where Aij(θ, ν) is the primary beam response of antenna pair i and j, both as a

function of angular position and frequency. ri and rj are position vectors of antennas

i and j, respectively. In interferometry, we care about the baseline vector, defined as

the difference in position between antenna pair bij ≡ ri − rj, rather than the absolute

positions of the antennas themselves. We note that the above equation is the Fourier

transform of the product of the sky intensity and the primary beam response. This is

the principle for radio interferometry. If the interferometer can sample a sufficiently

large amount of data in the Fourier domain, then we can do an inverse Fourier transform

to create images of the sky. This method provides an alternative to a large, single

aperture telescope. Since we are dealing with the Fourier transform of the sky, a small

baseline bij will capture the large-scale structure and a large baseline bij will capture

the small-scale structure. In a practical interferometer, we have a mix of small and

large baselines to sufficiently image the sky.

For simplicity, if we assume Aij(θ, ν) = 1 for all (i, j) pairs and θ, ν, then Equation

5.2 becomes

Vij(ν) =
∫
I(θ, ν)e−2πiνbij ·θ/c d2θ. (5.3)
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We define the Fourier dual to θ as the baseline length in terms of the number of

wavelengths: u = b/λ, where λ is the observed wavelength. u is now a frequency

dependent quantity, and is usually denoted as a vector quantity u = (u, v, w). In the

typical case that the array antennas lie on the same plane, u = (u, v). This is known

as the uv-plane. The Fourier transform of the sky intensity is given by the coherence

function

Ĩ(u, ν) =
∫
I(θ, ν)e−2πiu·θ d2θ. (5.4)

Reintroducing the primary beam, the visibility is a convolution of the pair-wise

primary beam with the coherence function

Vij(ν) =
∫
Ãij (u− uij, ν) Ĩ(u, ν) d2u. (5.5)

The pair of antennas integrates over the uv space, and thus the visibility takes samples

in the Fourier transformed domain of the sky intensity (the uv-plane), modulated by

the antenna response. The visibility is approximately the coherence function at the

location of the baseline:

Vij(ν) ≈ Ĩ ′(u, ν), (5.6)

where the prime denotes the measured values. The interferometer is not sensitive to the

sky signal directly but to the Fourier transform of the sky. In general, the visibility is

a complex 2D function. At a time t and frequency ν, one baseline pointing in a specific

direction will provide an unique (u, v) point in the Fourier space, which corresponds to

one sample of the complex visibility funciton. For a driftscan array, due to the rotation

of the Earth, the visibility samples elliptical tracks in the uv-plane.
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Figure 5.1: The uv-coverage map of the Tianlai array. Left: Samples collected by the
array over a period of 12 hours at the lowest frequency bin 687 MHz. Red and blue
tracks are complex conjugate of the same baseline (a baseline and its reversed baseline).
Right: Samples collected by the array at one specific time over the whole frequency
band 687 MHz to 812 MHz.The large tracks sample finer details in the sky, while the
smaller tracks sample the larger scale structure.
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With a set of measured visibilities in the uv-plane, we can do an inversion to the

Fourier transform to approximate the intensity Ĩ(u, ν). We don’t need full coverage of

the uv-plane to do so, and this is also what makes interferometry a powerful tool to

observe the sky:

I ′(θ, ν) ≡ FT −1
[
Ĩ ′ (uij, ν)

]
≈
∑
ij

Vij(ν)e2πiuij ·θ. (5.7)

A discrete inverse Fourier transform will give more weight to the points on the

uv-plane that are more heavily sampled. The weight of each point can be normalized

by dividing by the number of samples at such point. Since interferometers don’t have

a filled uv-plane, but only a sparse sampling of the plane, the measured intensity I ′

(also known as the dirty image) is a convolution of the sky intensity I with a point

spread function (PSF):

I ′ = PSF ∗ I (5.8)

where the PSF of the interferometric array is the Fourier transform of the visibility

domain sampling function S:

PSF↔ S(i, v). (5.9)

We want to measure the brightness temperature I(r) (in mK) within a given region,

where r is the normal Cartesian coordinates (x, y, z) and has units of Mpc. We choose

the z direction to be parallel to the line-of-sight, so z ≡ r∥. x and y are on the plane

r⊥, perpendicular to the line-of-sight. The relationship between r and the angles on

the sky θ and frequency ν is as follows [96]:



140

x = DM(z)θx

y = DM(z)θy

∆z = c(1 + z)2∆ν
H0ν21 [Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ]1/2 ,

(5.10)

where DM(z) is the comoving distance to the observed redshift and ν21 is the redshifted

frequency of the 21 cm emission. Having transformed Equation 5.7 into r coordinates,

we can further transform the intensity in the wavenumber k space, where k is the

Fourier dual to the real position r and has units of Mpc−1:

Ĩ ′(k) ≡ FT [I ′(r)] =
∫

rI ′(r)e−ik·rd3. (5.11)

The transformed intensity has units of mK Mpc3. Since the baseline coordinates u are

the Fourier dual to θ ∝ r⊥, which is itself a Fourier dual to k⊥, we have the proportion:

k⊥ = 2π
DM(z)u. (5.12)

This means a large baseline will sample large k modes, and vice versa. The power

spectrum can be calculated from Ĩ ′(k) [96]:

〈∣∣∣Ĩ ′(k)
∣∣∣2〉 = 1

(2π)3

∫
d3k′P (k′)

∣∣∣Ã (k− k′)
∣∣∣2 . (5.13)

If the primary beam is sharply peaked in k-space, the power spectrum is approximately

constant in the integral, so

P ′(k) =

〈∣∣∣Ĩ ′(k)
∣∣∣2〉

1
(2π)3

∫
d3k′

∣∣∣Ã (k− k′)
∣∣∣2 , (5.14)
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in which the units of the power spectrum are mK2 Mpc3. Using Parseval’s theorem,

we can approximate the denominator as

1
(2π)3

∫
d3k′

∣∣∣Ã (k− k′)
∣∣∣2 =

∫
d3r′ |A (r− r′)|2 ≈ DM(z)2Ω∆D, (5.15)

where Ω and ∆D are the solid angle of the primary beam and the extent of the

observation in the line-of-sight direction, respectively.

5.2 The Tianlai Pathfinder Array

The Tianlai Project is a 21 cm intensity mapping survey of the northern sky aimed

at characterizing the equation of state of the dark energy by measuring the baryon

acoustic oscillation (BAO) features in the large scale structure power spectrum as a

function of redshift. There are currently six 21 cm intensity mapping experiments with

dedicated instrumentation that are either under construction or observing: CHIME and

CHORD in Canada, HIRAX in South Africa, Tianlai in China, OWFA in India, and

BINGO from UK Brazil. At the current time, the Tianlai Project is in the Pathfinder

stage, which is the technology verification stage. It has two arrays: one array consists

of 16 circular, on-axis dish antennas, with dual-polarization feed antennas in each dish.

The other array consists of two large cylinder reflector antennas, each with 96 dual-

polarization feeds. These complementary array designs were chosen to test different

approaches to 21 cm intensity mapping. Both arrays are located in a radio quiet

site (44◦9′N, 91◦48′E) in Honglixia, Balikun County, Xinjiang Autonomous Region in

northwest China. They perform drift scans of the sky at constant declination. To

minimize radio interference (RFI), the station housing the digital electronics, including

the digital correlator, is located 5.8 km (11.8 km by road) away from the two arrays.
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The array and the digital electronics station are connected by a 8 km power line and

optical fiber cable.

The driftscan strategy allows for large sky coverage with a simple and inexpensive

instrument design. However, unlike tracking instruments, which can calibrate continuously

on bright sources in or near the field they are mapping, driftscan instruments such as

Tianlai must wait for bright sources to pass through the field of view to calibrate or

resort to calibrating on dimmer sources.

For both the dish and cylinder arrays, the reflectors, the feed antennas, and the

amplifiers are designed to operate from 400 MHz to 1430 MHz, corresponding to

redshift 2.55 ≥ z ≥ −0.01. The instrument can operate in any RF bandwidth of

~100 MHz by tuning the local oscillator frequency in the receivers and replacing the

bandpass filters. Currently, the Pathfinder arrays operate in the frequency range

700-800 MHz, corresponding to redshift 1.03 ≥ z ≥ 0.78 in 512 frequency channels

(δν = 244 kHz, δz = 0.0002). This chapter only discusses the dish array.

The Tianlai Dish Array

The Tianlai Dish Array consists of 16 on-axis dishes, each with a diameter of 6 m.

Each dish is mounted on an Alt-Azimuth mount and contains a dual linear polarization

feed antenna. One polarization axis is parallel to the altitude axis (horizontal, H,

parallel to the ground)), and the other is orthogonal to that axis (vertical, V). The

motors which control the dishes can steer the dishes to any direction, but once pointed,

the dishes operate in drift scan mode. The design parameters of the Tianlai dish

antenna are summarized in Table 5.1.

The dishes are tightly packed in a circle, as shown in Figure 5.2. The dishes are

arranged in two concentric circles of radius 8.8 m and 17.6 m around a central dish. The
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Figure 5.2: Top: A top view photograph of the Tianlai arrays, which consist of the
Dish Array and the Cylinder Array. The photo was taken with a drone at a height
of 280 m above the ground. The arrays saw first light in 2016. The position of the
calibration noise source (CNS) is indicated by the white arrows on the left. Bottom:
A schematic diagram of the dish array. Shown in red is a baseline in which the H
polarization of dish 4 is correlated with the H polarization of dish 9.
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arrangement of baselines allows for a moderate coverage of the uv-plane (see Figure

5.1).

The low noise amplifiers (LNA) are mounted to the back of the receivers and are

designed to have low noise temperature (about 47 K at room temperature). The RF

signals are transmitted through 15 m long coaxial cables to optical transmitters located

underneath the antennas, where they are converted to optical signals via amplitude

modulation and transmitted via 8 km optical fiber to the station house. The optical

signals are then converted back to RF signals there. The RF signals are shifted to

an intermediate frequency (IF) in the range 135-235 MHz before they are sent to the

digital system. A summary of this process in shown in Figure 5.3.

The IF outputs from the RF analog system are then fed into an FPGA-based

correlator, which consists of three FPGA boards: one for control and two processing

boards for signal sampling and processing. The Analog to Digital Converters (ADC)

in the processing boards sample the RF signals at a rate of 250 MSPS and a sampling

length of 14 bits. The FPGAs in the two processing boards compute the cross-

correlations in the time series data. The output visibility data contains 528 visibilities

(32 auto-correlations and 496 cross-correlations) for 512 frequency channels. The

visibilities are averaged over an integration period of 1 second. The full data rate

from the correlator is approximate 175 GB/day. Finally, the visibility data are sent to

a storage server and saved in HDF5 format.

To compensate for the phase variation along the 8 km long optical cables, we can

use absolute calibration using bright astronomical sources. However, there are not

enough bright sources on the sky for small aperture arrays like the Tianlai Dish Array

to have at least one in the primary beam at all times. To overcome this challenge, we

have a dedicated calibration noise source (CNS) located on top of a hill nearby (see
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Figure 5.3: Schematic of the RF analog system.

Reflector diameter 6 m
Antenna mount Alt-Az pedestal
f/D 0.37
Feed illumination angle 68◦

Surface roughness (design) λ/50 at 21 cm
Altitude angle 8◦ to 88.5◦

Azimuth angle ±360◦

Rotation speed of Az axis 0.002 ∼ 1◦/s
Rotation speed of Alt axis 0.002 ∼ 0.5◦/s
Acceleration 1◦/s2

Gain(design) 29.4+20log(f/700 MHz) dBi
Total mass 800 kg

Table 5.1: Design parameters of a Tianlai dish antenna.

Figure 5.2) to provide relative calibration. A broadband RF noise generator is placed

in a thermally controlled environment and is supplied with a regulated DC power to

ensure the stability of the RF amplitude. The on-off timing of the CNS is controlled

by a clock signal carried by optical fiber located in the station house 8 km away. More

details about calibration will be discussed further.

Observations

The Tianlai Dish Array has collected about 6200 hours of observational data, of

which 5700 hours are drift scans directly targeted at the North Celestial Pole (NCP).
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Data Set Date Calibration Sources Targets Length (hours)
Data 201605-06 May 2016 None Cygnus A 72
CygnusANP 20170812 Aug 2017 Cygnus A North Pole 67
CasAs 20171017 Oct 2017 None North Pole 147
CasAs 20171026 Oct 2017 None Cassiopeia A 290
3srcNP 20180101 Jan 2018 3C48, Cassiopeia A, M1 North Pole 241
2srcNP 20180112 Jan 2018 3C48, M1 North Pole 97
IC443NP 20180323 Mar 2018 IC443 North Pole 181
M87NP 20180407 Apr 2018 M87 North Pole 90
2srcNP 20180416 Apr 2018 IC443, M87 North Pole 142
3srcNP 20181212 Dec 2018 Cassiopeia A, 3C48, M1 North Pole 757
1DaySun 20190113 Jan 2019 None Sun 48
3srcNP 20190128 Jan 2019 Cassiopeia A, 3C48, M1 North Pole 741
3srcNP 20190228 Feb 2019 3C123, M1, IC443 North Pole 764
3srcNP 20190402 Apr 2019 M1, IC443, 3C273 North Pole 522
3srcNP 20190611 Jun 2019 M87, Hercules A, Cygnus A North Pole 737
3srcNP 20190830 Aug 2019 3C400, Cygnus A, Cassiopeia A North Pole 924
3srcNP 20191022 Oct 2019 3C400, Cygnus A, Cassiopeia A North Pole 302

Table 5.2: Observation log for the Tianlai Dish Array from 2016 to late 2019.

The details of each observation are shown in Table 5.2. Before each NCP observation,

the antennas are pointed at one or more bright astronomical source(s) for calibration.

During each observation, the CNS is turned on and off periodically. In 2017, the

CNS was turned on for 20 seconds, followed by 220 seconds off, repeatedly. The fraction

of noise-on time is ∼ 8.33%. In 2018, the noise-on fraction was reduced to ∼ 1.67%:

the CNS was turned on for 4 seconds, followed by 236 seconds off, repeatedly.

5.2.1 Instrument and Beam Pattern

Since the astrophysical foregrounds are several orders of magnitude larger than

the HI signal, and instrumental effects can introduce erroneous structures into the HI

signal, it is essential to have a very good knowledge of the frequency-dependent beam

pattern of the antennas.
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Figure 5.4: Plot of the mean FWHM of the main beam vs. frequency using daily
transits of Cas A. The top figure shows a typical horizontal baseline (4H-9H), which
primarily measures the E-plane of the antenna, while the lower figure shows a vertical
baseline (4V-9V), primarily measuring the H-plane. The black line shows the mean in
each 244-kHz wide frequency bin over the period of 12 days and the red band shows
3 times the standard deviation in FWHM for each day. The solid green line shows
the expected FWHM from electromagnetic simulation. The dotted blue line shows the
FWHM of a uniformly-illuminated Airy disk.
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We have performed extensive electromagnetic simulations of the feed antenna and

the dish reflector using CST Studio Suite. The beam pattern of the array has also

been scanned with an unmanned aerial vehicle (UAV). The UAV, outfitted with a

broadband noise source and flown in the farfield of the dish array, measured the profile

of the mainbeam and the sidelobes at different RF power levels and frequencies. Details

of the electromagnetic simulations and the UAV measurements can be found in [141].

We also used the transit of Cassiopeia A (Cas A) to characterize the main beam

as a function of frequency. The Cas A signal is not bright enough to assess the beam’s

sidelobes. Figure 5.4 shows the full-width half-maximum (FWHM) of one cut through

the beam pattern for a typical baseline as a function of frequency. Since a baseline

consists of two dishes, the measured beam pattern is the geometric mean of the patterns

of those two dishes. The beam pattern is measured in the E-W direction repeatedly

over a period of 12 days (starting on 2017/10/26) by observing the transit of Cas A.

The absolute magnitude of the visibility versus time is fitted to a Gaussian shape for

each transit. The mean and standard deviation of the FWHM fit is shown in the

figure (black line and red band, respectively). We can see that daily variation of the

FWHM is less than 1%. The electromagnetic simulation of the FWHM is also shown

in the plot (solid green line). The dotted blue line shows diffraction limited circular

aperture, which equals 1.028λ/Deff with Deff = 0.9D of the actual D = 6 m and the

1.028 prefactor comes from the FWHM of an Airy pattern from a uniformly illuminated

disk. We also see a standing wave pattern in the plot, which appears in both simulated

and measured data.

The uniformity of the beam widths for the dish arrays also needs to be characterized,

since we want the beam width to remain consistent across all antennas. We use the

transit of M1 to measure the FWHM of 118 H-H baselines (excluding auto-correlation
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Figure 5.5: The black line shows the mean FWHM vs. frequency for 118 H-H baselines
during a transit of M1 on 2018/01/02

and faulty baselines) as a function of frequency. The result is shown in Figure 5.5. We

see that the beam widths are fairly consistent with about a few percent variation.

We also use the transit data for Cas A on 2016/10/30 to quantify the pointing

accuracy of the dishes in the E-W direction. Figure 5.6 shows the variation in the

absolute amplitude of the visibilities during the same observation interval. 120 cross-

correlation visibilities are shown in different colors. Each curve is the binned average

of 40 middle frequency channels of width 244 kHz each, for a total frequency range

from 742.6172 MHz to 752.1387 MHz. The black curve shows the predicted response

from a 5.4m diameter dish with simple Gaussian beam with no sidelobe.

5.2.2 Gain stability

As described in the previous section, we can use the CNS to calibrate the electronic

phase drift and the transits of point sources to get absolute gains and calibrations.
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Figure 5.6: Variations of the absolute magnitude of the cross-correlation visibilities vs.
time (in seconds) during a transit of Cas A. All the un-calibrated cross-correlations
have been renormalized to unity at their respective maxima. The green dip at around
6000 s is due to an artifact from the CNS interpolation.
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We are also interested in the gain stability, i.e. how the gain varies with time. In this

section, we will characterize the gain stability of the instrument by studying its response

to a strong point source (Cas A). In this observation, the whole array was pointed

at a fixed declination of 58.8 degrees over a period of 12 days, and we measured the

variations in the absolute amplitude and phase of Cas A transits through the meridian.

We look at the peak response of the array during Cas A transits and plot the

uncalibrated amplitude and phase for all frequency channels in Figure 5.11, where

different colors represent different days. Since the array is pointed directly at the

declination of Cas A, this is a measurement through the main beam and thus there is

minimal side lobe structure. We see that both the amplitude and the phase of the gain

are quite stable over time.

In Figure 5.7, we show the phase calibration with the CNS before and after using

nscal over a period of 11 days. The phase calibration is performed at the peak response

during Cas A transits, and the calibration reduces the phase variation significantly over

most baselines. Work is still in progress to improve the efficacy of the algorithm.

5.2.3 Sensitivity versus integration time

Figure 5.8 shows the level of visibility fluctuations due to receiver noise, sky signal,

etc. The plot shows the overlapping Allan variance versus integration time. Allan

variance is used to estimate the stability due to noise and other systematic errors. As

expected for white noise, at low integration time τ , the variance is high. At higher τ ,

it decreases since the noise averages out, as the noise should integrate down as 1/
√
τ .

However, at τ beyond 300 seconds, the variance starts to increase again due to the

rotation of the sky. This is important in choosing the ideal length of time over which

we can bin the visibility in the time direction. To get to the level of the HI signal
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Figure 5.7: Top: Phase variation measured before and after phase calibration with the
CNS using nscal. The phase variation is calculated as the deviation from the mean of
11 days at the peak of the Cas A transit. Bottom: Histogram of the phase variation
for 20 typical baselines, before and after running nscal. Application of nscal shifted
the phase deviations toward 0 and improved the phase deviation significantly.
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(about 1 mK), we need to beat the noise which is given by the radiometer equation

Trms = Tsys/
√
τ∆ν. For the Tianlai array with Tsys ∼ 80K and ∆ν = 0.25 MHz,

we would need τ = 2.56 × 104 seconds to get down to the HI signal. Since this plot

shows we can only integrate for ∼ 300 seconds per day, it would take about 85 days of

observation to achieve this target.

5.2.4 Tianlai data analysis pipeline

The digital outputs from the cross-correlator are stored on hard drive arrays in

HDF5 format for offline processing. The offline data is then passed to a custom data

processing pipeline, named tlpipe, for additional scientific analysis and map making.

tlpipe is written in Python and designed to be modular, with each module serving

a different function. A schematic of tlpipe is shown in Figure 5.9, with independent

processing tasks in purple rectangular boxes.

Users of tlpipe can write a customized task in the pipeline in a *.pipe file. The

general procedures consists of the following tasks:

Input Data: The digital output from the correlator. For the dish array, the

integration time is 1 second, and there are 32(32+1)/2 visibilities from 16 dual-polarization

feeds (including auto-polarization). The data is saved at 60 minute intervals into a new

HDF5 file. tlpipe can read one or multiples of those files.

Radio Frequency Interference (RFI) Flagging: RFI signals much bigger than

typical white noise or astronomical noise are flagged as anomalous and masked from

the visibility. The Boolean mask is stored separately from the visibility. tlpipe has

multiple flagging algorithms, but mainly uses two: the sum threshold method [102]

and the scale-invariant rank (SIR) operator method [103]. The RFI masked from 1

hour of nighttime data using the sum threshold and SIR operator method is shown in
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Figure 5.8: Overlapping Allan variance [114] versus integration time, τ , for four typical
baselines centered at 747.5 MHz with bandwidth 0.244 MHz during the nighttime only,
for the real part of the visibility. The visibility is uncalibrated and the vertical axis is
in arbitrary units. The intercept of the dashed purple line ∝ τ−1/2 is adjusted so that
it matches the variance trend. The plot shows that the noise integrates down as 1/

√
τ ,

as expected, for about 300 seconds. The imaginary part of the visibility shows similar
behavior.
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Input Data

RFI Flagging

Strong Source Calibration

Relative Phase Calibration

Quality Check

LST Binning

Map-Making

Further Processing

Scientific Products

Figure 5.9: Flowchart for the data processing pipeline. Figure from [142].
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Figure 5.10: Masking of the CNS and RFI after applying both the sum threshold
method and the SIR operator method. The vertical lines show times and frequencies
masked when the signals from the CNS are used for calibration. Besides the CNS,
there is a small amount of data at discrete frequencies and times masked as RFI. The
masked RFI (dots and lines) are magnified for better readability. Some faint horizontal
lines (at about 777 MHz and 767 MHz) are from intermittent RFI.

Figure 5.10. The periodic vertical stripes show the mask when the CNS is turned on,

and the dots and small horizontal lines are the RFI. Since the telescope is located in a

radio-quiet site, only about 0.6% of the data is lost due to RFI.

All the metadata, including calibration sources, CNS on time, temperature of the

analog electronics room, site temperature, dew point, humidity, precipitation level,

wind direction, wind speed, barometric pressure, etc. are stored along with the visibilities

in the HDF5 files. These metadata can be later use to check the electronic gain variation

of the system versus different weather variables.

Relative phase calibration: A strong and regularly-broadcast calibration noise

source (CNS) is used for phase calibration. It is currently used to remove the phase

variations over time but may be used for amplitude calibration in the future. The noise

source can be viewed as a near-field source with visibility
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V ns
ij = C · eik(ri−rj), (5.16)

where C is a real constant, and the subscript ij corresponds to baseline i, j. For each

baseline, the task defines the visibility during the on and off cycles of the CNS to be

V on
ij = Gij

(
V sky
ij + V ns

ij + nij
)

V off
ij = Gij

(
V sky
ij + nij

)
,

(5.17)

where Gij is the complex gain of baseline i, j and n is the noise, and V sky
ij is the observed

visibility from the sky.

The difference between V on
ij and V off

ij is then given by

V on
ij − V off

ij = GijV
ns
ij

= |Gij| eik∆LC · eik(ri−rj)

= C |Gij| eik(∆L+(ri−rj)),

(5.18)

where ∆L is the difference in cable length. The phase introduced by the CNS is then

ϕij = Arg
(
V on
ij − V off

ij

)
= k (∆L+ (ri − rj)) = k∆L+ const (5.19)

The corrected sky visibility, after CNS calibration, is

V rel-cal
ij = e−iϕijVij = e−iArg(V ea

ij −V off
ij )Vij. (5.20)

Point source calibration: The next step after relative phase calibration with the

CNS is absolute gain calibration. The telescope uses transits of strong astronomical

radio sources to calibrate the amplitudes and phases of the complex gains for each
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feed. The pipeline fits the transit signal for each baseline and frequency independently.

The complex gains for each feed (both horizontal and vertical polarizations) are then

obtained and saved. The computed complex gains are applied to the entire dataset

until the next radio sources transits.

Map-making: The map making code uses m-mode analysis [122, 124]. The results

are 3-dimensional maps, with 2 angular dimensions and 1 redshift dimension.

Other tasks: There are other tasks in the pipeline for plotting, time or frequency

averaging, bad channel identifications, or calculating the 21 cm power spectrum from

maps.

5.3 Goals and Future Plans

Figure 5.12 shows a simulation of the brightness temperature of the HI signal and

foreground contamination as a function of observed frequency and source redshift. The

blue line demonstrates the example HI signal along a typical line-of-sight that traces the

over-density by small objects at low redshift. The red line shows what we expect to see

from the foregrounds: several orders of magnitude brighter but spectrally smooth. The

most challenging requirements for future telescopes is to tackle this bright astrophysical

foreground.

Foreground contamination sets the design requirements for all stages of the instrument

design, simulation, and data analysis. To remove the bright foregrounds, more accurate

calibration is needed: the beam, or the instrument response must be understood

to 0.1%, and the gain, or the time-dependent response of the instrument, must be

calibrated to 1% [124]. Knowledge of the beam needs higher precision to reduce mode

mixing from the foreground into the HI signal. Currently, we rely on sky signals for
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Figure 5.11: Uncalibrated gain amplitude (top) and phase (bottom) versus frequency
during transits of Cas A over 11 nights for baseline 4H-9H. Each colored curve
represents the peak response during the transit for each night.
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Figure 5.12: Simulation of the brightness temperature of the HI signal and foreground
contamination as a function of observed frequency and source redshift. The blue line
demonstrates the example HI signal along a typical line-of-sight, with the black line
showing the mean HI signal. The red line shows shows the brightness temperature of
the foreground. Figure from [14].



161

both beam and gain calibration, and this has not achieved the required accuracy for

adequately removing the foregrounds. Better drone measurements and electromagnetic

simulation, including environmental factors such as scattering from the Earth also needs

to be considered. The future low-z Tianlai bands overlap with most geo-positioning

satellites, so RFI removal will need to be improved. In addition, the ionosphere plasma

couples with the Earth’s magnetic field to rotate the polarization of the incoming light.

The rotation is proportional to λ2 (longer wavelengths are more affected) and time-

dependent with the number of free electrons present in the ionosphere. This affects

EoR experiments but is a negligible effect at Tianlai observing frequencies.

One of the largest sources of noise comes from the system noise temperature, which

is dominated by the low noise amplifier. The system noise temperatures for both the

Tianlai dish and cylinder arrays are 80−85K, depending on frequency. Deploying more

antennas can achieve a better signal-to-noise ratio. Synchrotron is still subdominant

to the receiver noise for the current Tianlai bands. Data processing also needs to be

optimized for the huge amount of data coming in. Both the dish and cylinder arrays

generate about 20GB of data each day without compression. This poses a challenge in

data transfer, storage, distribution, and analysis.

5.3.1 Cross-correlation with galaxy surveys

Intensity mapping is a relatively recent field, enabled by the improved sensitivity

in the observing instruments and data processing. Optical galaxy surveys, on the

other hand, are a more well-developed observational tool. Galaxy catalogs have grown

tremendously to millions of galaxies, both at low redshift resolution (photometric)

and high resolution (spectroscopic). Galaxy surveys therefore can augment the data

obtained with 21 cm intensity mapping, which aggregates the emission of galaxy
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clusters and provide a means for testing the intensity mapping technique. By cross-

correlating with galaxy surveys, this allows us to accurately map the full 3D structure in

the Universe. In the near future, the Tianlai Pathfinder arrays will be tuned to operate

in the frequency range 1330-1430 MHz, corresponding to redshift 0.07 ≥ z ≥ −0.01,

to facilitate cross-correlation with low redshift HI and galaxy surveys.

In 21 cm intensity mapping, the dominant sources of noise come from sky noise and

thermal noise. We measure the aggregate intensity from all objects, including small

and faint signals, so the Poisson noise (or shot noise) is currently not a concern. The

shot noise comes from the fact the we are sampling a continuous field using a finite

number of objects. To mitigate shot noise, we need to take spectra of more objects up

to a given flux. In the future, intensity mapping experiments will start to be sensitive

to shot noise. Galaxy surveys allow us to probe individual sub-samples with certain

properties to reduce the shot noise in future intensity mapping experiments.

In addition, even though galaxy surveys excel at lower redshifts, the become more

challenging at higher redshifts. Since we are looking at the younger Universe, the

observations must be done in the infrared, where detectors are less efficient and more

expensive than traditional optical sensors. The infrared range also contains more sky

contamination and more variables. Intensity mapping may one day complement the

weakness of galaxy surveys at higher redshifts.
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Chapter 6

Sun Removal with AlgoSCR

Several ongoing and upcoming intensity mapping radio interferometers, such as

Tianlai, CHIME, HERA, HIRAX, etc., are designed to map large swaths of the

sky by drift scanning over periods of many months. One of the challenges of the

observations is that the daytime data are contaminated by strong radio signals

from the Sun. In the case of Tianlai, this results in almost half of the measured

data being unusable. In this chapter, we try to address this issue by developing an

algorithm for solar contamination removal (AlgoSCR) from the radio data. The

algorithm is based on an eigenvalue analysis of the visibility matrix, and hence is

applicable only to interferometers. We apply AlgoSCR to simulated visibilities,

as well as real daytime data from the Tianlai dish array. The algorithm can

reduce strong solar contamination by about 95% without seriously affecting other

weaker sky signals and thus makes the data usable for certain applications. The

content of this chapter is also given in the paper "AlgoSCR: an algorithm for solar

contamination removal from radio interferometric data" published on MNRAS



164

in 2022. The full version of the paper is available here https://academic.oup.

com/mnras/article-abstract/512/3/3520/6544640.

6.1 Introduction

Cosmologists study the Universe on the largest observable distance scales in order

to understand its origin and evolution. In the past few decades, cosmic microwave

background (CMB) instruments have mapped almost the entire sky with high sensitivity

and fine angular resolution. These maps measure the intensity and polarization fluctuations

at the last scattering surface and remain a primary tool for studying the Universe.

However, for understanding the nature of dark matter and dark energy, it is essential

to study the evolution of structure as a function of time. Galaxy redshift surveys

have been extremely successful in mapping the large scale structure of the Universe

by cataloging the distribution of luminous galaxies in redshift space. These maps can

be used, for example, to observe the characteristic baryon-acoustic oscillation (BAO)

signal, which can be used as a standard ruler to extract cosmological parameters.

However, as we map larger and more distant volumes of the Universe, the method

faces multiple challenges. For example, the galaxies become fainter and spectral lines

are redshifted to wavelengths that are difficult to detect from the ground.

Hydrogen intensity mapping, a radically different technique, creates 3D maps using

the 21 cm emission of neutral hydrogen (HI) without resolving individual galaxies.

This line is unique in cosmology as, for λ > 21 cm, it is the dominant astronomical

line emission for all redshifts. Hence, to a good approximation the wavelength of a

spectral feature can be converted to a redshift without having to first identify the

atomic transition. In principle, HI intensity-mapping could be used to make 3D maps

https://academic.oup.com/mnras/article-abstract/512/3/3520/6544640
https://academic.oup.com/mnras/article-abstract/512/3/3520/6544640
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of matter at all redshifts up into the “dark ages” (z ≈ 100), even before galaxies have

formed.

The first HI intensity mapping observations began over a decade ago [2, 108, 95,

30, 90] and interest has continued to grow [15, 83, 125]. A number of dedicated

projects have been launched to detect the signal and turn the technique into a useful

cosmological tool. These are mainly interferometers, such as CHIME [19, 99], Tianlai [31,

137, 38, 79, 135], MWA [130], LWA [52], HERA [44], HIRAX [100], and PUMA [125],

but also include single dishes with multiple feed antennas, such as BINGO [21, 46, 136]

and FAST [64]. Intensity mapping instruments can address questions at a variety of

redshift ranges. At z ∼ 10 they probe the Epoch of Reionization (EoR), star formation,

and galaxy assembly, while at lower redshifts they trace large scale structure for studies

of dark energy, etc. [108, 27, 23, 2, 30, 90, 95].

So far, the HI signal has not been detected using intensity mapping by itself.

Intensity mapping observations, in the post-recombination epoch, have detected HI

when cross-correlated with galaxy redshift surveys [92, 91, 13]. A number of challenging

systematic effects must be overcome to allow autocorrelation detections. The foremost

of these is separating the HI signal from Galactic and extra-Galactic astronomical

foregrounds, which are ∼ 4− 5 orders of magnitude brighter [83]. The Sun represents

an astronomical foreground that is even brighter and of a different character.

The daytime data from radio interferometer arrays in general, and the Tianlai dish

array in particular, are contaminated by the solar signal, making the data unusable

for most astronomical analyses. The lost data have a significant impact on observing

efficiency; reaching the required survey sensitivity means observing the sky for almost

twice the number of days. This penalty is particularly problematic for HI intensity

mapping, where long integration times (months or years) are necessary to detect the
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HI signal. Furthermore, this data loss prevents obtaining continuous, 24 hr data

sets, which allow dense coverage of the uv plane and facilitate detection of periodic

signals. Furthermore, not having 24 hours of continuous usable observations prevents

the application of m-mode map making techniques [123]. The (u, v) coverage can still

be quite good with nighttime data, and one can recover full 24 hours RA coverage by

combining nighttime data from observations about 6 months apart. In this paper we try

to remove the solar contamination from the daytime data from a radio interferometer.

We have used the data from the Tianlai dish array as our test sample. However,

the problem is not unique to Tianlai; the same algorithm may be used for other

radio interferometric observations. While daytime observations with single dish radio

telescopes are also plagued by the Sun’s signal, this algorithm is only applicable to

interferometer arrays.

The Tianlai Project is led by the National Astronomical Observatory of China

(NAOC). It consists of two pathfinder radio interferometers: an array of cylinder

antennas and an array of dishes, at a radio-quiet site in Xinjiang, China [32, 79, 135].

The objective is to obtain high fidelity 3D images of the northern sky using HI intensity

mapping. The analysis described in this paper concentrates on the dish array data.

The Tianlai dish array consists of 16 steerable, 6 m diameter dishes; a schematic is

shown in Fig. 5.2, which also shows the dish numbering scheme. We use these dish

numbers for referring to different baselines in the paper. The dish array currently

operates between 685 MHz and 810 MHz, corresponding to redshift 0.75 < z < 1.07,

divided into 512 equally spaced frequency bins of width 244 kHz (δz = 0.0002). The 16

dual-polarization feeds yield 32 autocorrelation visibilities and 32 × (32 − 1)/2 = 496

cross-correlation visibilities, which are currently sampled every second. The system

noise temperatures for the dish antennas are 80− 85 K [79, 140, 38, 135].
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Different methods have been proposed to remove broadband RFI and the solar

contamination [104, 26] based on SVD decomposition and other methods in the time

and frequency domain. The solar contamination is extremely strong in the Tianlai

data and methods using SVD decomposition in the time and frequency domain remove

the background signal along with the solar contamination. The objective of this paper

is to describe an eigenvalue-based approach that operates in the baseline space for

removing solar contamination from radio interferometric data without affecting the

background signal. We propose an algorithm, AlgoSCR, that can remove most of the

solar contamination, provided the Sun is the strongest source in the sky along with

other weaker sources. The paper is organized as follows. In the second section, we

discuss the solar contamination problem in the Tianlai dish array in detail. The third

and the fourth sections give the detailed algorithm for removing the solar contamination.

We also show the results of our analysis on the real Tianlai data. To test what fraction

of the Sun signal can be removed by our algorithm, and how much signal from other

cosmic sources is removed by it, in section five we perform two tests. First, we apply

it to Sun-contaminated Tianlai data and compare the cleaned visibilities to the same

sidereal times observed during nighttime. Second, we apply it to simulated data where

the amount of solar contamination and foreground point sources are known. In the

discussion section we assess the efficacy of the method and the issues that we face when

applying it. We also describe some future directions to pursue with this approach.

6.2 The solar contamination problem

The Tianlai data show strong contamination from the solar signal during the

daytime. In Fig. 6.1 we plot the sum of the absolute visibility from 10 frequency
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Figure 6.1: Value of the (uncalibrated) cross-correlation visibility amplitudes averaged
over the 10 central frequency bands during 4 days of observations of the NCP in April,
2019. Integration time is one second. Each plot corresponds to a different baseline, as
indicated. The baseline numbering scheme appears in Fig. 5.2. Time is given in local
time.
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channels (out of 512 channels) at the center of the band, for 4 consecutive days (total 96

hours) for two different baselines. The horizontal axis shows the time in hours, starting

at the beginning of the observations. The 2 different plots are for 2 representative

visibilities. We can see a roughly smooth visibility amplitude for about 10 hours every

day and then a sudden increase in the absolute visibility and a noisy pattern for about

the next 14 hours.

The plots clearly show that the daytime signal is several times stronger than

the night. The shape of the contamination pattern also varies with baseline. Some

of the baselines show a bumpy feature with the strongest visibility occurring near

noon, whereas for other baselines the signal is strongest during Sunrise and Sunset

and shows a ‘dip’ feature during the daytime. The top plot is the auto-polarization

visibility corresponding to two horizontal feeds, whereas the bottom plot shows an

auto-polarization visibility from two vertical feeds. The auto-polarization signals from

similar feeds on other baselines show roughly similar types of patterns, except for a

couple of baselines. The data are taken during observations of the North Celestial Pole

(NCP) in April, 2019. During this observing period the path of the Sun is located at

an angle of approximately 85◦ from the direction of the main beam. The plot gives

an overview of the magnitude of the solar contamination problem in the Tianlai dish

array.

An obvious conclusion of this strong daytime visibility is that the telescopes are

responding to the Sun’s illumination of their far sidelobes. For the baselines measuring

correlations of the H polarization, the antenna sidelobes are aligned with the direction

of Sun near noon, providing a strong visibility at mid-day, while for the V polarization

the Sun falls between two side lobes at noon, producing stronger signal during Sunrise
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Figure 6.2: Simulated antenna directivity along the Sun’s track across the beam during
daytime (180◦ corresponding to 12 hours) when the dish array is observing the NCP
in April. The scale is in arbitrary linear units (not in dB). The plot shows that for one
of the polarizations, the signal from the Sun has a“dip” in power during the daytime,
whereas for the other polarization there is high power during certain parts of the
daytime. Even though the plots do not show the exact features that we observe during
daytime (Fig. 6.1), we must remember that the sidelobes from the electromagnetic
simulations are not exactly the same as those of the real antenna.

and the Sunset. These effects are consistent with the expected responses of the feed

antennas, which are essentially orthogonally oriented crossed dipoles.

In Fig. 6.2, we show a cut through the simulated beam pattern for a single dish

measured using an electromagnetic simulation (EM) package (CST 1), corresponding

to the Sun’s track during the daytime. We can see that for one of the polarizations

(left plot) we are getting a low amplitude during the midday whereas for the other

polarization (right plot) the amplitude is comparatively high at noon. The simulated

patterns shown in Fig. 6.2 don’t exactly replicate the observed pattern of Fig 6.3,

because the sidelobes from these EM simulations don’t exactly match those of the real

beam. The sidelobes at this particular angle are also highly cluttered. A couple of

degrees change in the path gives rise to a very different shape in the sidelobes, making

it difficult to reconstruct the exact pattern through such an EM simulation.
1https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
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Figure 6.3: Simulated beam directivity as a function of beam angle θ from the
beam center of the antennas for 3 different frequencies, 700 (red), 750 (green) and
800 MHz (blue). Each plot shows the absolute co-polar directive gain averaged over
the azimuthal angle. The angle is the polar angle calculated from the center of the
beam. The yellow shaded region shows the range of polar angles for which the Sun
appears in the sidelobes of the beam, ranging from 66.55◦ at the Summer Solstice, to
113.45◦ at the Winter Solstice, when the dish array observes the NCP. The gain is
relatively flat over this range of angles and causes the Sun signal to vary by only a
factor of about 6 over the year.

This daily response to the Sun signal is relatively constant over a period of a year.

Fig. 6.3 shows the directive gain of the dish antennas as computed by an EM simulation.

The Sun enters the sidelobes of the antennas over a range of polar angles for which

the beam patterns are relatively flat. The simulation is consistent with measurements

of the daytime visibilities at different times of the year. Using the eigenvalue analysis

described below, Fig. 6.4 shows the contribution by the Sun to the visibility for a

typical baseline during January, 2018 and then again in April, 2019. As the paths of

the Sun through the sidelobes of the antennas are different at different times of the

year, the visibilities are also slightly different, but the overall patterns of the signals

are similar. We can see that the amplitudes are within ∼ 30% of each other. Part of

this amplitude variation was induced by the variation of system gain, which is caused

by the different air temperature in Jan. and Apr. The fast oscillating fringes from the

Sun are present in both plots.
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Figure 6.4: The amplitude of the daytime visibilities in January, 2018 and April,
2019. Due to the difference in the time of Sunrise in January and April, the 0 hr
of each curve is adjusted so that the Sun signals from both data sets peak at about
the same time. The green and blue curves are the amplitude of the visibility obtained
from the telescope for January, 2018 and April, 2019, respectively. The ‘fast oscillation’
fringes are seen in both observations. The red and orange curves are corresponding
spline fits to better highlight the fast oscillation fringes.

The complex visibility for a typical baseline is shown as a ‘waterfall plot’ in Fig. 6.5

for a 24 hour period.We can see that the daytime data is dominated by bright fringes

caused by the Sun. On the other hand, the pattern in the nighttime data comes from

the much dimmer radio sky and has a very different character. The dominant fringes in

the nighttime data come from a combination of weak sources near the NCP and bright

sources far from the NCP, particularly Cassiopeia A (Cas A) and Cygnus A (Cyg A).

6.3 Removing Sun contamination using eigenvalue

analysis

We start by defining the notation used in this paper. The visibility matrix is given

by

V = [DsG]† [DsG] +
〈
[N]†[N]

〉
, (6.1)
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Figure 6.5: The complex visibility for a typical baseline plotted over a 24 hour period
in January, 2019. We represent the phase of the complex visibility by hue (color) and
the amplitude by value (brightness) in a HSV (hue, saturation, value) display of the
color model (see Fig. 6.27 for details). The local time proceeds linearly from left to
right, with a sampling interval of 1 s. The frequency increases linearly from bottom
(685 MHz) to top (810 MHz) in 512 equally spaced frequency bins. The time interval
from about 10:00 to 18:00 is dominated by the Sun.

where Ds is the voltage signal from the antenna in matrix form, G is a direction-

independent complex gain matrix, N describes the noise from the receivers, and †

represents the conjugate transpose. The individual components are given by

V(i,j) = ⟨E∗
iEj⟩ . (6.2)

Ei represents the complex voltage from receiver i, with E∗
i being its complex conjugate.

Ei is given by

Ei =
(∑

s

Di (ω⃗s) eik·riFs

)
Gi +Ni, (6.3)

where Fs is the electric field of the radio wave coming from a source on the celestial

sphere, Di(ω⃗s) is the primary beam of antenna i, and this is a function of the direction
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vector ω⃗s. k is the 3-dimensional wavenumber, the Fourier dual to the position vector

ri of feed i.

The intensity of the source at any frequency ν, is given by

Is(ν) = |Fs(ν)|2 = F ∗
s (ν)Fs(ν) . (6.4)

For extended sources we need to integrate over different directions for calculating

Ei:

Ei =
(∫

Di (ω⃗s) eik·r⃗iFsdωs

)
Gi +Ni . (6.5)

The visibility is an ensemble average of the E∗
iEj, i.e.

V(i,j) = ⟨E∗
i Ej ⟩τint

=
[ 1
τint

∫ τint

0
E∗
i Ej dt

]
(6.6)

where τint is the integration time, which is constant for any time and frequency bin

(t, ν). For the current Tianlai setup, the integration time is 1 s. The asterisk ( ∗ )

represents the complex conjugate and the bracket ⟨ ⟩ represents the ensemble average.

Here we should note that the visibilities from different astrophysical sources are

additive. Provided there is only one point source on the sky, the visibility matrix,

i.e. V(i,j), at any time can be written as an outer product, of the electric field from

the source measured at different feed antennas. Therefore, if the visibility matrix is

decomposed into its corresponding eigenvalues and eigenvectors, there should be only
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one nonzero eigenvalue. In the presence of other weaker sources, the largest eigenvalue

should correspond to the Sun signal and the eigenvector corresponding to the largest

eigenvalue will roughly point toward the direction of that source in the eigenspace.

The contributions from additional, weaker sources and noise may alter the direction

slightly.

Comparing the visibility amplitudes between the daytime and the nighttime data

in Fig. 6.1, we can infer that the largest contribution to the daytime signal is from the

Sun, entering through the antenna sidelobes. Therefore, in the eigen-decomposition of

the visibility matrix the largest eigenvalue should represent the solar contamination.

6.3.1 Issues with the autocorrelation signal

The voltage from the feeds contain a contribution from the receiver noise. Therefore,

the measured signal or voltage Ei for a given feed i is the sum of the sky signal, ESky i

and the instrument noise, Ni, i.e. Ei = ESky i +Ni.

Under the assumption that the noise terms from separate feeds are uncorrelated,

we can say that the ensemble average of the noise from feed i and feed j is zero, i.e.

⟨N∗
i Nj⟩ ≈ 0. Therefore, the visibility for cross-correlated feed i and j, where i ̸= j, is

V(i,j) ≈ ⟨E∗
Sky iESky j⟩.

However, for the autocorrelations, the visibilities, V(i,i) are dominated by the positive

noise term ⟨N∗
i Ni⟩. The amplitudes of the autocorrelation signals are much higher

than those of the cross-correlation signals. Therefore, in an eigen-decomposition of

the visibility matrix, the eigenvectors are dominated by the noise signals from the

autocorrelation, as the sky signals are typically much smaller than the noise.

It is not possible to ignore these auto-correlation signals or simply set them to

0 during the eigenvalue decomposition. To overcome this difficulty, we replace the
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Figure 6.6: Top: The real and imaginary components of the raw visibility of baseline
[5H 7V] during transit of Cas A in October 2017. We can see that there is a small DC
offset in both the real and imaginary components. Bottom left: The real and imaginary
components of the raw visibility after removing the offset from each of the components.
Bottom right: Amplitude of the visibility of baseline [5H 7V] after removing the mean.
We can see a perfectly Gaussian transit peak.
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Figure 6.7: The waterfall plot of the complex visibility (same as Fig. 6.5) after
the nightly mean subtraction. We can see that most of the horizontal stripes, which
probably are caused by crosstalk, are now gone from the waterfall plot. The structures
from the sky are more prominent.

corresponding terms in the visibility matrix by the following quantity as a proxy for

the autocorrelation visibilities:

V(i,i) = 1
n

∑
k,j

abs
[

V(i,k)V(j,i)

V(j,k)

]
, ∀i ̸= j ̸= k. (6.7)

The receiver noise component in the correlation matrix is bypassed by using (7) to

replace the autocorrelations. But its long term effects remain uninvestigated. Here,

n is the number of values over which we are doing the sum, i.e. the number of (j, k)

pairs. This brings the level of the amplitude of the autocorrelation to the order of the

cross-correlation amplitude and we can do a meaningful eigenvalue decomposition.

6.3.2 DC offset in the visibility

If there is no strong source in the sky then the real and the imaginary parts of

the visibility are expected to randomly fluctuate around 0. However, often in radio
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interferometers, there are some DC offsets in the real and imaginary components of

the visibility. The offsets may originate from a variety of systematic effects, and cross-

coupling of signals between the antennas is one of them. In the Tianlai data, we see it

in multiple baselines as colored horizontal stripes in the waterfall plots of the complex

visibility (see Fig. 6.5).

In the top plot of Fig. 6.6, we show the real and the imaginary parts of the visibility

from a transit of Cas A observed by baseline [5H 7V]. The amplitude of the visibility

during the transit is expected to form a Gaussian profile. However, as there is some DC

offset, we can expect the plot to show some wavy feature modulating the Gaussian. To

prevent this we need to remove the DC offset. In the middle panel of Fig. 6.6, we show

the real and the imaginary components of the visibility, after subtracting the mean

of the nighttime data from both the real and imaginary components of the visibility.

We remove the night-time mean from each frequency channel and each baseline. The

amplitude of the visibility, after DC offset removal, shows a Gaussian peak during the

transit of Cyg A, as expected and is shown in the bottom panel of the same figure.

We are investigating the source of the DC offset. However, the nighttime mean

subtraction substantially reduces the night-to-night variation in absolute terms and as

a fraction of the remaining signal, as discussed in [135]. This nightly mean subtraction

removes much of the correlated noise as well as a significant fraction of the signal (gain

times sky). Because the sky signal should be the same at the same local sidereal time,

it does not contribute to the nightly variation that can be caused by variations in gain

or correlated noise. If the variations were due only to gain fluctuations, we would not

see a decrease in fractional variation. Thus, much of the subtracted signal is correlated

noise.
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Figure 6.8: Plot of all the 16 eigenvalues in the eigen-decomposition of the horizontal
polarization visibility V(H). We can see that one of the eigenvalues is much larger than
the other eigenvalues during daytime. This particular eigenvalue is coming from the
solar contamination of the daytime data. We can see that the other eigenvalues are also
affected during daytime. This happens due to the change in the eigenvectors, one of
which (the eigenvector corresponding to the largest eigenvalue) is oriented towards the
Sun during the daytime. The plot here is shown at the central frequency (747.5 MHz)
of the observed Tianlai Dish Array band. All other one-dimensional plots also use this
frequency.

The presence of this DC offset may also introduce an error in the eigen-decomposition

and it must be removed before running the Sun removal algorithm described below.

We subtract the mean value of the real and imaginary parts of the visibility for each

night of data. We do not include the daytime data when computing the mean, because

it is contaminated by the Sun. However, the DC offset is very stable over each night

and from night to night. So we remove the nightly mean from the entire 24 hours of

data, including the daytime data.

In Fig 6.7, we show a waterfall plot of the complex visibility from one baseline after

the nighttime mean removal. We can see the nighttime structures more prominently

after the mean subtraction.
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Figure 6.9: Phase plot of the 15th component of the eigenvector corresponding to the
largest eigenvalue of the horizontal polarization visibility, V(H). We can see the strong
fringes during daytime, which confirms that the eigenvalue is coming from a single
strong source, the Sun. During night, as there is no single strong source, the phase is
varying randomly. The horizontal line in the center is caused by the calibration noise
source, which is turned on and off periodically.

Note that, for simplicity, we have only considered the auto-polarization signals.

If we use both the auto-polarization and cross-polarization signals, we expect to get

two large eigenvalues, each corresponding to one of the polarizations. However, at

present, we are in the process of understanding different systematic effects involved

in measuring the cross polarization signals in the Tianlai data. Different systematic

effects, e.g. mutual coupling between two feeds in the same dish, which are in close

proximity to each other, are more complicated for cross-polarization data than the

same polarization and require detail investigation both in data analysis as well as the

instrumentation level. These are beyond the scope of this paper. Therefore, in this

paper, we set the cross polarization signal to 0, making the visibility matrix look like

V =

V(H) 0

0 V(V )

 , (6.8)
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where the superscriptsH and V refer to the horizontal or vertical polarization, respectively.

V is the visibility matrix at each time and frequency (t, ν).

6.3.3 Understanding the eigenvalue decomposition

For removing the solar contamination from the real data, we first remove the

DC offset from all the cross-correlation channels. We write the visibility matrix for

each frequency and at every time bin in the form shown in Eq.(6.8). We replace the

autocorrelation signals using the formula given in Eq.(6.7) and decompose the matrix

into eigenvalues and eigenvectors as V = EΛE−1. At this point it should be noted

that the eigenvalue decomposition is invariant under a U(1) transformation, i.e. if we

multiply the full eigenvector matrix, E , by a factor of eiψ for any real ψ, then the

corresponding eigenvalue matrix Λ will remain invariant. Therefore, without loss of

generality, we choose the first component of the eigenvector for each time and frequency

component to be real and positive.

Also, in our case the visibility, V(X) (where X = {H,V }) is a block diagonal matrix.

Therefore, the eigenvalues and the eigenvectors of the matrix will be the eigenvalues

and eigenvectors from each of the blocks, i.e. V(X) = E (X)Λ(X)E (X) −1. For each t

and ν, E is a n× n matrix whose i-th column is the complex normalized eigenvector,

E (X)
i of V, and Λ is the diagonal matrix whose diagonal elements, Λii = λi, are the

corresponding eigenvalues.

Fig. 6.8 shows 16 eigenvalues calculated from the horizontal polarization matrix

(V(H)) as a function of time. The plot clearly shows that one eigenvalue is much

higher than the other values during daytime. We can undoubtedly infer that the

major contribution to the power in that particular eigenvalue comes from the solar

contamination, as the Sun is by far the strongest source in the sky during day time.
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Figure 6.10: Phase plot of the 15th component of the eigenvector corresponding to the
4th largest eigenvalue in the horizontal polarization visibility V(H). Here we don’t see
any fringes, showing that no individual strong source is contributing to this particular
eigenvalue.

Figure 6.11: The phase of one component of the eigenvector corresponding to the
2nd largest eigenvalue. We can see weak fringes, indicating that some of the solar
contribution is present in the second largest eigenvalue.
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Fig. 6.9 shows the phase of one of the components of the eigenvector that corresponds

to the largest eigenvalue: E (X)
(15,16). Eigenvalues are sorted according to the daytime

amplitude. The 16th eigenvalue is the largest and we have shown the 15th component

of the corresponding eigenvector.

Clear fringes are visible in the daytime data, showing that the daytime signal in

the eigenvector is coming from a single strong source. In the nighttime data we can see

the phase varies completely randomly, proving the absence of any single strong source

at the nighttime data.

In Fig. 6.10 we show the phase from one of the components of the 4th largest

eigenvector, E (X)
(15,13). Unlike Fig. 6.9, no fringes are visible, indicating that there

is no single strong source being detected by that particular baseline and the signal

is coming from the background sky. The same thing is true for any of the other

smaller eigenvalues. In Fig. 6.11 we have plotted the phase from one component of

the eigenvector corresponding to the second largest eigenvalue. We can find weak

fringes during the daytime, indicating that some of the Sun signal has ‘leaked’ into

this eigenvector. Ideally, the second eigenvalue represents the second strongest sources

in the sky, and this leakage may be due to the presence of other sources and the

background noise, which includes diffuse sources from the sky and thermal noise. In

addition, the re-normalization of the autocorrelation signal using Eq. 6.7 is another

possible cause of this leakage. Finally, it may also be that some of the solar radiation

is being reflected from the ground and illuminating the feeds from a different direction

from the main Sun signal.

If we plot the phase from any component of the eigenvector corresponding to the

third largest eigenvalue, we can still see some fringe pattern in the daytime data.
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Figure 6.12: Blue: The original largest eigenvalue from the eigen-decomposition, during
daytime. Red: The same largest eigenvalue but with zero value during the daytime.
This step simulates removing the Sun signal in Eq. 6.11, since the largest eigenvector
during the daytime points in the direction of the Sun in the eigenspace.

However, these fringes are much weaker in comparison to E (X)
(15,x) showing that the

leakage of solar power is mostly restricted to the second largest eigenvalue.

6.3.4 A first attempt to subtract the solar contamination signal

Because the solar signal is contributing mostly to the largest eigenvalue, as a first

step in removing the Sun signal we can set the largest eigenvalue during the daytime

data to 0, and then reconstruct the visibility. In Fig. 6.12 we show the largest eigenvalue

as a function of time (in blue during the daytime). The red curve shows the value after

setting the largest eigenvalue during daytime to be 0. All the other eigenvalues are kept

fixed. In Fig. 6.13, we show the waterfall plot of the complex visibility of one baseline

that we recover after this step. The plot shows that most of the contamination is

removed. However, some solar contamination signal is still discernible in the visibility

plot. We can see clear, faint fringes for the baseline plotted in Fig. 6.13.
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Figure 6.13: The waterfall plot of the complex visibility after zeroing the largest
eigenvalue during daytime for a typical baseline. Nightly mean subtraction has been
applied. There is still some residual solar contamination signal, which is causing the
weak fringes during the daytime.

Figure 6.14: A 4-hour segment of the amplitude of one component of the eigenvector
corresponding to the largest eigenvalue is shown in the light green curve. The sampling
interval is 1 s. The random fluctuations in the data come from the noise. The black
curve shows this component after smoothing the data, as described in section 6.4.1.
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Figure 6.15: The complex visibility after smoothing the components of the largest
eigenvector in spherical coordinates (described in Sec. 6.4.1, before scaling by a gain
factor, described in Sec. 6.4.2 ) for a typical baseline. Nightly mean subtraction has
been applied. There is still some signal from the Sun that has not been removed.

6.4 Improving the Sun subtraction

As we can see from Fig. 6.13, some of the solar signal still remains in the visibility

matrix, mainly the signal that leaked to the second largest or even to the third largest

eigenvalue. We attempt to remove this residual signal through the following 2 steps.

6.4.1 Smoothing the eigenvalues and eigenvectors

The problem with the direct eigenvalue removal method described above is that

it is based on the assumption that there is a single source on the sky. This is not

true in this case, as the visibility matrix contains signals from other sources as well as

instrument noise. In Fig. 6.14, one component of the eigenvector corresponding to the

largest eigenvalue is shown in light green over a period of 4 hours. The data, sampled

every second, are noisy. However, as the Sun moves smoothly and the beam is not

expected to be structured on small scales, we expect the eigenvector to vary smoothly
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with time. These fluctuations in the eigenvalue probably come from noise. The long

term (minute level and longer) fluctuations originate in the structure of the sidelobes

of the telescopes.

As the noise in the visibility matrix may cause the Sun signal to leak from the

largest eigenvalue to other eigenvalues, in this section we try to reduce the effect of

noise. For doing that, we fit a smooth curve (black line) through the eigenvectors

corresponding to the Sun signal. This smoothed signal from the largest eigenvector is

then subtracted from the original visibility to construct the Sun-removed visibility.

The cleaning routine can be summarized as follows. The visibility matrix V(X)

is first decomposed into the eigenvalue and the eigenvectors for each time and each

frequency bin,

V(X) = E (X)Λ(X)E (X) −1, X = {H,V }. (6.9)

Suppose ES is the eigenvector corresponding to the largest eigenvalue, λS. As shown

in Fig. 6.14, the direction of ES will vary in every second. The n-dimensional complex

eigenvectors have only 2n − 1 degrees of freedom as we have already set the first

component to be real and positive. As the eigenvectors are unit vectors, the total

number of independent components becomes 2n − 2. If we fit a smooth line through

each of the 2n−1 components, then we will overfit and the amplitude of the eigenvectors

will not be 1. To keep the eigenvector normalized while doing the fitting, we express

each (complex) component of the eigenvector in n-dimensional spherical coordinates

and then fit a smooth line through the tangents of the angles in spherical coordinates

and convert back to Cartesian space. This gives the black line, shown in Fig. 6.14.

Smoothing in spherical coordinates ensures that the normalization of the eigenvector

is preserved during the smoothing procedure. (See Appendix. ?? for details.)
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Let the smoothed components of the largest eigenvectors be ẼS. If λ̃S is the

contribution to the visibility from the direction of the eigenvector ẼS, then we can

write, λ̃S = ẼTS VẼS. If we assume that this smoothed component comes from the Sun

signal, then the contribution to the visibility from the Sun is given by

ṼS = λ̃S
[
ẼS ⊗ ẼS

]
. (6.10)

After subtracting the Sun signal, the contribution to the visibility from the rest of the

radio sky and noise is given by

VSky = V− ṼS . (6.11)

In Fig. 6.15 we show the complex visibility after removing the Sun signal using this

particular algorithm. In comparison to the simplest algorithm, of just removing the

largest eigenvalue, this new algorithm works better. However, we can see that some of

the Sun signal is still present in the visibility.

6.4.2 Scaling the Sun signal from eigenvalue analysis

The above eigenvalue analysis is based on the assumption that the signal coming

from Sun is contained in the largest eigenvalue. As discussed before, this assumption

is not correct because of the leakage of power into other eigenvalues.

To overcome this issue, we consider that during the daytime the signals from the sky

are much smaller than the solar signal. Therefore, the Sun signal, VS(t, ν), calculated

from our analysis should roughly match with the visibility V(t, ν) during the daytime

as the other signals are negligible in comparison to the VS(t, ν), provided that there
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Figure 6.16: Plot of the gain g = Aeiϕ after χ2 minimization for 10 hours during the
daytime. Blue: Plot of the gain amplitude A. Red: Plot of the gain phase ϕ in radians.
The dots represent the points of χ2 minimization that occur every 1000 seconds. These
gain values are extrapolated to the intervening points for a total of 36,000 seconds.

are no other strong sources during the day. To do that we introduce a scaling (gain)

factor, g = Aeiϕ, for each 1000 seconds (about 15 min) of daytime data and minimize

χ2 =
∑
t,ν

[ℜ(V− gVS(t, ν))]2

+
∑
t,ν

[ℑ(V− gVS(t, ν))]2 . (6.12)

Here ℜ( ) and ℑ( ) are the real and imaginary parts of the quantity inside the bracket.

We get 36 gain factors (g), calculated from 10 hours (36, 000 seconds) of daytime data.

In Fig. 6.16, we show the plot of g over 10 hours of daytime, with circular dots. The

smooth lines show the interpolated data. We can see that g varies smoothly throughout

the day. The expectation is that the |g| should be very close to 1 and very smooth,

and the phase variation should be very small. This is because the Sun and the sky

move smoothly through the beams over the day. As long as the Sun signal is strong

enough in comparison to the background sky we can expect that the power leakage
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Figure 6.17: The waterfall plot of the complex visibility after χ2-optimization scaling
the Sun signal by a gain factor (Section 6.4.2) for a typical baseline.

Figure 6.18: Left: Waterfall plot of original (Sun-contaminated) January 2018 complex
visibility over 24 hours (same as Fig. 6.5). Middle: waterfall plot after applying
removing solar contamination with AlgoSCR (same as Fig. 6.17). Right: waterfall plot
of visibility data taken in April 2019. The areas between the white lines show periods
of sidereal time when observations occur during daytime in January, and nighttime in
April.
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will vary smoothly and the gain variation should also be smooth. As the signal in

the largest eigenvector and leaked power both are coming from Sun we can expect the

phase variation to be minimun. Fig. 6.16 shows that the assumption is a good one

in this case. However, near sunrise and sunset the amplitude and the phase change

rapidly, possibly because the Sun signal is weaker at those times.

The interpolated g is used as a multiplication factor to determine the solar contribution

g×ṼS(t, ν), which is finally subtracted from V(t, ν). This gives our final Sun-removed

signal from the daytime data, i.e.

VSky(t, ν) = V− gint(t, ν)ṼS(t, ν) . (6.13)

In Fig. 6.17 we show the complex visibility after the solar contamination removal

using Eq. 6.13. We can see by visual inspection that most of the contamination signal

is removed and the fringes from the weaker sources in the background sky are visible.

This is the best that we get from AlgoSCR. However, on closer inspection we can see

that a small amount of the Sun signal is still present in the data in the form of weak

fringes. In the next section, we will make a first estimate of the performance of our

solar signal subtraction and its effect on the signals from the fainter sources.

6.5 Testing the efficiency of the algorithm

6.5.1 Comparison with uncontaminated data

Due to the orbital motion of Earth, the solar signal contaminates observations made

at different sidereal times, or sky orientations. Therefore, to quantify the fraction of the

solar contamination removed by AlgoSCR, in this section we compare the Sun-removed
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visibility to the uncontaminated visibility observed during the same sidereal time at

an interval of 4 sidereal months. In the left plot of Fig. 6.18, we show the raw complex

visibility from January 2018 (same as Fig. 6.5). The middle plot is the visibility after

the solar contamination removal using AlgoSCR (same as Fig. 6.17). Finally, the plot

on the right shows the complex visibility of the sky observed in April 2019. All plots

show the complex visibilities over one sidereal day. About 5 hours of the April 2019

visibility plot is not contaminated by the solar signal, and we mark that period with

two white lines in all the plots.

The plots show that visibilities of the same sky orientations are similar. The large

fringes in the Sun-cleaned plot coincide with those from nighttime of April 2019. Here

one should note that, in the plot in the middle, we can also see some additional weak,

rapidly oscillating fringes, which are not present in the April 2019 data. However,

upon careful inspection, we can see these ‘fast fringes’ are originally present in the left

plot (before Sun removal). Therefore, the algorithm does not introduce any obvious

additional signal.

For understanding these results quantitatively, we take 1-minute time averages and

384-bin frequency averages, and then calculate the ratio of the residual Sun signal to

the background signal over the same 5-hour range of sidereal time:

∑
t,ν |VSky(t, ν)−Vorg-2019(t, ν)|∑

t,ν |Vorg-2019(t, ν)| = 0.37. (6.14)

Here, Vorg-2019 is the original (i.e. uncleaned) visibility from April 2019. The ratio of

the original daytime signal to the background signal over the same sidereal time is:

∑
t,ν |Vorg-2018(t, ν)−Vorg-2019(t, ν)|∑

t,ν |Vorg-2019(t, ν)| = 7.48. (6.15)
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Assuming that the difference measured by Eq. 6.14 is dominated by residual Sun

contamination, we see that AlgoSCR reduces the solar contamination by about 95%.

6.5.2 Comparison with simulated data

We test the efficiency of AlgoSCR when applied to simulated data sets. This

provides us with another way to check the fraction of the solar contaminant signal

that is removed and to determine how much of the sky signal we are erroneously

removing by the analysis.

Construction of simulated data

For constructing a simulated visibility signal Vsim, we assume that the electric field

at each feed antenna contains contributions from Sun, the sky, and noise. We have

assumed that the noise variance is the same throughout the analysis.

The receiver noise is modeled as Gaussian noise in the electric field, Enoise i, at the

feed antenna. We consider the noise contribution to the electric field to be Gaussian

in each sample.

In the Tianlai dish array the integration time in the correlator is 1-sec. The

correlator takes in the data that are collected every few microseconds and averages

them in an interval of 1-sec. To simulate this process, we add Gaussian random noise

in the electric field with a sampling interval of 10 ms. We then calculate the noise

contribution to the visibility as Vnoise (i,j) ≡ ⟨E∗
noise iEnoise j⟩τint , where ⟨ ⟩τint represents

the ensemble average over integration period, τint = 1 second. Here we have 100 data

points for every second on which the average is carried out. This method also ensures

that the autocorrelation visibilities follow a χ2 distribution and the cross-correlation

visibilities follow a product normal distribution. The mean and variance of Enoise i
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Figure 6.19: Top: The amplitude of the visibility for baseline [1H 3H]. The actual data
from the Tianlai dish array are colored blue, while the simulated data are shown in red.
The actual data are very similar to the simulation; regions of overlap appear purple.
Bottom: In red is the real part of the noise plus the artificial sources. The blue line
shows the real part of the signal from the artificial sources that is added to the data.
The imaginary part (not shown) is similar to the real part.

are chosen empirically so that the simulated visibility, Vsim, matches the observed

visibility. The mathematical details on how to calculate the visibilities from artificial

point sources in the sky are shown in Appendix 6.9.

To create the simulated Sun signal, we have taken the largest eigenvalue and

correponding eigenvector from Eq. 6.22 from the Tianlai dish array data and treated

it as the solar signal. The electric field for the Sun, thus calculated, is added to the

simulated noise.

For the simulated artificial sources, we assume the telescope array is pointed at

the NCP. The artificial sources are three made-up sources near the NCP. All the

artificial sources are visible within the main beam, which is assumed to be Gaussian.

Their brightnesses are chosen so that the amplitude of their combined visibility is

about 10 times smaller than the noise. (An analysis with different source strengths
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Figure 6.20: The real part (top) and the phase (bottom) of the Sun-removed visibility
from simulated data for baseline [1H 3H] after 60-second averaging. The signal from
the artificial sources is shown in blue.

Figure 6.21: Plot of the real part of (Vsim − Vorg)/σ, where σ2 is the variance of the
added noise. We can see that the ratios for the real part are roughly within 3. As the
noise is Gaussian, we can expect that the noise signal should be with 3σ. we conclude
that the Sun removal algorithm does not introduce any significant additional noise in
this analysis.
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Figure 6.22: The difference between the simulated visibility (shown in Fig. 6.19) and the
Sun-removed visibility (shown in Fig. 6.20) is shown in red with 1 second averaging.
The signal from the largest eigenvector, which is used as the Sun signal during the
daytime, is shown in blue. The data are averaged in 60 second time bins to reduce the
noise.

is presented in the next section.) The artificial source visibilities are frequency- and

baseline-dependent, just as visibilities from real sources on the sky. We also assume

that the visibilities for the Sun and artificial sources are uncorrelated, i.e., there is no

cross-term between the Sun and the artificial sources. This makes the visibilities for the

Sun and artificial sources additive, as shown in Eq. 6.16. Please check Appendix 6.9

for details.

Vsim = Vnoise + VS + Vartificial sources (6.16)

Results from the simulated data

We generated simulated data as shown in Fig. 6.19. The top panel of Fig. 6.19 shows

the amplitude of the visibility for baseline [1H 3H] for both simulated and actual Tianlai

dish array data: the plot in blue shows the actual complex visibilities from the Tianlai

dish array, and the red plot shows the simulated data in our simulation (see Equation

6.16). The bottom panel shows the real part of the signal from the artificial sources
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Figure 6.23: Left: Simulated daytime visibilities for a typical baseline. The bright
fringes are from the Sun and the weaker fringes are from the artificial sources. Right:
Sun-removed visibility using AlgoSCR. The fringes from the artificial sources are clearly
visible.

(in blue). The real part of the combined signal (simulated noise and the visibility of

the artificial sources that is added to the Sun) is shown in red.

We apply AlgoSCR to the simulated data. Top panel in Fig. 6.20 shows the real

part of the visibility (in red) after applying the Sun removal algorithm, along with the

real part of the visibility of the artificial sources (in blue) for baseline [1H 3H]. As the

nature of the imaginary part will be similar, we have not explicitly shown it in the

plot. The phase is shown in the bottom panel of the same figure.

The ratio of the difference between the simulated and the original visibility Vsim −

Vorg, and the noise standard deviation, σ, is plotted in Fig. 6.21. We can see that the

ratio is within 3. As the injected noise is Gaussian, we can expect that most of the

visibility should also fall within 3σ. Therefore, Fig. 6.21 ensures that the recovery of

the signal using AlgoSCR does not introduce additional noise.

The red plot in Fig. 6.22, shows the difference between the amplitude of the

simulated visibility (including the Sun), and the visibility that we are getting after

applying AlgoSCR. This gives the contribution from the Sun in our simulated data.

The blue curve shows the Sun signal that we introduced for generating the simulated
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data. We can see that the plots match very well. Top plot is constructed using the

data from each second and the bottom plot is after averaging the data over a minute.

In the next set of plots, Fig. 6.23, we show the complex visibilities for one baseline,

before and after the solar contamination removal by AlgoSCR. The visibility data show

that the artificial sources that we had introduced are clearly visible after the solar signal

removal, even though the source strength was much smaller than the Sun signal and

the noise. This plot shows qualitatively the potential of the Sun removal algorithm.

In the next section we quantify the amount of the signal from artificial sources that is

removed.

Comparing efficiency of the method for different external source strengths

Here we compare the efficiency of AlgoSCR in recovering the artificial sources

for different source strengths. For this analysis we use the real daytime visibility

data taken by the Tianlai dish array as the base visibility. To this data we add the

artificial visibility signal with different source strengths. We assume that sources are

not correlated with the visibility data and the visibilities are additive.

After running AlgoSCR to remove the Sun, we using a χ2 statistic to compare the

signal with the source visibility that was originally inserted. The plot of the reduced

χ2 for baseline [1H 3H] is shown in Fig. 6.24 against the source strength. Here χ2 is

defined as χ2 = 1
ntσ2

∑
t,ν |Vorg(t, ν)−Vsim(t, ν)|2 during 10 hours of daytime. Here σ2

is the noise variance and nt is the number of time-steps, which is the number of degrees

of freedom in this case. As we are sampling each second for a total of 10 hours, the

number of degrees of freedom nt = 36000.

We can see the χ2 value is small for the cases in which the artificial source amplitudes

are small compared to the Sun signal amplitude. As the artificial source strengths
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Figure 6.24: Plots of χ2 = 1
ntσ2

∑
t,ν(Vorg − Vsim)2 from the real and imaginary parts

of the visibility for different artificial source amplitudes. nt is the number of sample
points in the time direction and σ2 is the noise variance. The amplitude of the original
visibility Vorg and the simulated visibility Vsim are shown in Fig. 6.20. We can see that
the χ2 is increasing as we increase the amplitude of the artificial sources.

increase, the fit gets worse. This is because our analysis is based on the assumption

that the solar signal is the only dominant signal. As the strength of the artificial sources

increases, the assumption slowly breaks down. In such cases, the largest eigenvalue

starts to capture signal from the artificial sources. When the artificial sources are

larger than the Sun, the largest eigenvalue provides the contribution from the artificial

sources and not the Sun. In such cases we are essentially removing the artificial sources

and thus the χ2 grows quadratically.

In Fig. 6.25 we have plotted the same χ2, where instead of dividing by σ2 we have

divided by |Vorg|. Here we can see that the χ2 is lowest when the strength of the

artificial source is about 40% of the Sun signal. When the source strength is small, the

χ2 is dominated by the noise and the χ2 is high. On the other hand, when the strength

of the artificial sources is high compared to the Sun contamination as described before,

the recovery gets worse.
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Figure 6.25: Plots of χ̄2 = 1
nt|Vorg|

∑
t,ν(Vorg−Vsim)2 from the real and imaginary parts

of the visibility for different artificial source amplitudes. Here, the plots are normalized
by |Vorg| instead of σ2. We can see that the χ̄2 is lowest at about 40, indicating that
the recovery is best when the amplitude of the source is about 40% of the Sun signal.

6.6 Discussion

While developing AlgoSCR we explored multiple techniques and came across various

issues. Here we discuss some of the points that are important in the context of

optimizing AlgoSCR.

In Sec. 6.4, we address the issue of removing the residual Sun signal after subtraction

of the largest eigenvalue. Here we introduce the concept of the multiplication factor

g. This procedure raises the question of what will happen if instead of filtering out

just the largest eigenvalue, we filter out a smooth component from the two largest

eigenvalues. We find that removing the two largest components after smoothing, then

the signal from the second largest component, which includes some radio sources, also

gets removed, i.e. we will be removing the components from other radio sources and

hence the method will not work.

In Sec. 6.4.2, while choosing the gain values, g, we calculate the gains at intervals

of 15 min and then interpolate. We find that the results are fairly insensitive to the



201

choice of time interval (say, 10 min or 30 min), as is expected because the gain varies

smoothly throughout the day. However, if we choose a long time interval (several

hours) for setting the gains, then we expect the results to worsen as the gain may

change significantly in that time. However, we have not simulated these cases.

Another important fact that came up during our analysis is that the Sun removal

algorithm works better with more baselines, i.e. if we use all 16 dishes from Tianlai

instead of, say, 10 dishes, then the effectiveness of the algorithm increases. Analysis

with fewer dishes increases the power leakage to other eigenvalues. The exact reason

behind this is not known, but it may happen as more baselines reduce the effect of the

noise in the eigen-decomposition.

In addition, if we increase the integration time from 1 second to a larger value, the

results get worse, which may be due to the fact that the Sun is not a point source. This

is different from co-adding the signal from multiple days, which is eventually what the

Tianlai array is designed to do. However, we have not tested the algorithm on co-added

signals yet.

Our analysis shows that AlgoSCR removes most of the solar contamination during

the day. However, it is just a first step. We have not yet tested its effect on map-making

and power-spectrum estimation. A critical next step is to make sure that AlgoSCR does

not affect the statistics of the maps. This can be checked by comparing the HI power

spectra and other statistical quantities from the maps produced using only nighttime

data and the maps produced using the full day data after solar contamination removal.

Such an analysis requires foreground subtraction and mapmaking and is outside the

scope of the present work.
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6.7 Conclusion

In this paper, we present a way to separate out the solar contamination from the

daytime data observed by an interferometric radio array using eigen-decomposition

techniques. The technique is primarily based on the assumption that if the Sun signal

is the dominant signal in the sky, along with other weaker sources, and if the signals

from the different sources are not correlated, then in the eigen-decomposition of the

visibility matrix, the largest eigenvalue is from the strongest source, i.e. the Sun.

The eigenvector corresponding to the largest eigenvalue points in the direction of that

source in the eigenspace. The technique should filter out this largest eigenvalue while

retaining the signals from other sources in the sky.

However, antenna gain fluctuations, noise, sidelobe gain patterns, ground reflection,

thermal effects on the instruments and cables, and cross-talk between antennas introduce

mixing between the largest eigenvalue and other smaller eigenvalues. For these reasons

singling out and removing the Sun signal is not straightforward, and there is some

residual contamination from the Sun. Therefore, we apply some novel techniques to

remove the leftover Sun signal.

We have tested AlgoSCR in two ways. First, we compared the visibilities obtained

by cleaning observations made during sidereal times when the Sun was up with observations

made during those same sidereal times at night. We show that AlogSCR can reduce the

solar contamination by a factor of 95%. Second, we used simulations to show that our

algorithm is able to remove the solar contamination without removing other, weaker

sources in the sky. We showed that the efficacy of the algorithm is maximum when the

amplitude of the external source is about the 40% of the solar contamination signal.
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The fraction of the removed background signal remains significantly small when the

external source strength is within a range of 20% - 65% solar contamination.

To the best of our knowledge, this is the first published method for removing

solar contamination from radio interferometer data. AlgoSCR can contribute to other

ongoing and upcoming radio interferometers for solar contamination removal.

6.8 Summary of AlgoSCR

Here, we review the step-by-step procedure for Sun removal using the algorithm

described above.

• For this procedure to work, first we separate the visibility V into the horizontal

and vertical polarizations, V(H) and V(V ), respectively. If we don’t separate the

polarizations, the noise and crosstalk in the same dish will give an additional large

eigenvalue. The dimension of V is 32 × 32, since we have 16 dual-polarization

feeds. The dimension of V(H) and V(V ) will be 16× 16.

• Remove the night-time mean from the visibility matrix V(X): V(X) = V(X) −

⟨V(X)⟩night. Here the average is over the time direction for different frequency

channels. This will remove the cross-talk between the antennas.

• Replace the auto-correlations by Eq. 6.7. In practice, if the denominator, V(X)
(i,j),

is zero, we replace the term inside the sum by a small number, such as 0.0001.

• Perform an eigen-decomposition of V(X):

V(X) = E (X)Λ(X)(E (X))−1. (6.17)
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• For each second of integration time, let the largest (normalized) eigenvector

corresponding to the largest eigenvalue, λ(X)
S (t,ν), be E (X)

S (t,ν). Now E (X)
S (t,ν) is a vector

containing n = 16 complex numbers. For fitting the smooth line through these

vectors we calculate the tangents, T (X)
S (t,ν) as:

T
(X)
S (t,ν)(i) =

∥E (X)
S (t,ν)(i)∥√√√√ n∑

j=i+1

(
∥E (X)

S (t,ν)(j)∥
)2

∀i ∈ [1, n− 1]. (6.18)

• For smoothing the tangents, T (X)
S (t,ν), along the time direction we apply a Butterworth

low-pass filter to remove the high frequency signal. For our dataset, the filter

order is 2 and the −3 dB cut-off frequency is 0.01 Hz. A 0 phase filtering is done

by scipy’s filtfilt function. Let the filtered (smoothed) tangents be T̃ (X)
S (t,ν).

• Convert the eigenvectors back to Cartesian coordinates. For each second of

integration time,

∥Ẽ (X)
S (t,ν)(i)∥= sin

(
tan−1(T̃ (X)

S (t,ν)(i))
)
×

i∏
j=1

cos
(
tan−1(T̃ (X)

S (t,ν)(j))
)
, ∀i ∈ [1, n− 1] (6.19)

and

∥Ẽ (X)
S (t,ν)(n)∥=

n∏
j=1

cos
(
tan−1(T̃ (X)

S (t,ν)(j))
)
. (6.20)

We then calculate the real and the imaginary parts of the of the eigenvectors

Ẽ (X)
S (t,ν)(i) = ∥Ẽ (X)

S (t,ν)(i)∥
[

cos
(
θ

(X)
S (t,ν)(i)

)
+ i sin

(
θ

(X)
S (t,ν)(i)

) ]
(6.21)

where θ(X)
S (t,ν)(i) = tan−1

(
ℑ(E (X)

S (t,ν))/ℜ(E (H)
S (t,ν))

)
.
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• The contribution to the visibility from the Sun is given by

V(X)
S (t,ν) = λ

(X)
S (t,ν)

(
Ẽ (X)
S (t,ν) ⊗ Ẽ

(X)
S (t,ν)

)
(6.22)

where ⊗ denotes the outer product between eigenvector E (X)
S and itself.

• After removing the Sun contribution, the sky contribution to the visibility is

V(X)
Sky = V(X) −V(X)

S

= E (X)Λ(X)(E (X))−1 −V(X)
S . (6.23)

However, the above steps still leave some Sun signal contamination, as shown in

Fig. 6.13. To better remove this leftover Sun contamination, we multiply the Sun

signal in Equation 6.22 by a complex factor of g = Aeiϕ:

V(X)
Sky = V(X) − AeiϕV(X)

S . (6.24)

• To find A and ϕ, we divide the 10 hours of daytime data into 36 intervals (1000

s each) and minimize the χ2 for each interval. Here we define the χ2 as

χ2 =
∑
t,ν

(
ℜ
[
V(H) − AeiϕV(H)

S (t,ν)

])2
+

∑
t,ν

(
ℑ
[
V(H) − AeiϕV(H)

S (t,ν)

])2
(6.25)

The sum is done over all seconds in the chosen interval and frequency 700.625 MHz

to 794.375 MHz. We don’t sum the frequency channels before 700 MHz and after
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800 MHz, because we don’t want to include the edge of the band-pass filter. At

the end of this process, we have 36 [A, ϕ] pairs.

• We have 36 [A, ϕ] pairs corresponding to thirty-six 1000 sec intervals in 10 hours

of daytime data. We use a cubic spline to interpolate a [A, ϕ] pair for each second

in 10 hours of daytime data.

• Subtract the corrected Sun signal:

V(H)
Sky (t,ν) = V(H) − Aint (t,ν)e

iϕint (t,ν)V(H)
S (t,ν). (6.26)

This gives us the final solar contamination removed result, and the results are

shown in Fig. 6.16.

6.9 Calculating the artificial source visibilities

The visibilities of the artificial sources come from three made up sources near

the NCP. The three simulated sources are randomly chosen to be at (RA, DEC) =

(75.75,81.25), (79.5, 80.5) and (245.0,79,75) with constant brightness temperatures

across all observed frequencies. We calculated the visibilty for each frequency in

Tianlai’s 512 frequency bins (equally spaced between 685 MHz and 810 MHz).

Each astronomical source exhibits a linearly varying phase with time and frequency,

since the visibility is proportional to e−iφ, where φ is the fringe phase and is defined as

φ = 2πντg(ν, t) = 2πνb · s
c

. (6.27)
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τg(ν, t) is the frequency independent geometric delay and is equal to

τg(ν, t) ≡
b · s
c

= bx
c

cos δ cosH(t)

−by
c

cos δ sinH(t) + bz
c

sin δ, (6.28)

where δ is the source declination, H(t) is the source hour angle as a function of sidereal

time, b = (bx, by, bz) are the baseline components with units of length in the radial,

eastern and northern polar directions and s is the source vector. c is the speed of light.

We can also calculate the fringe rates as follows:

∂φ

∂t
= 2πν

c
[−bx sinH(t) + by cosH(t)] cos δ, (6.29)

For each second of integration time and each frequency, the visiblity for dish i and j

is calculated as follows

V(i,j) =
n∑
k=1
FkA(s)e−iφ (6.30)

where Fk is the flux of source k. In our simulations, we used three sources with

F = (546, 170, 128) Jansky. A(s) is the gain of the antenna in the direction of the

source vector s. For simplicity, A(s), the simulated main beam gain, is taken as a

Gaussian distribution with a standard deviation of 3◦ (FWHM = 7◦), and we assume

that all three artificial sources fall within the main beam. Therefore we did not model

the beam sidelobe gain. A(s) is also assumed to be independent of frequency. In

the real Tianlai Dish beam pattern, the mainbeam (excluding the sidelobe) FWHM is

about 5◦ ([135]). The simulated baselines are identical to the real Tianlai dish array,

and the procedure for calculating the visibility is repeated for every baseline. The

waterfall plots of the simulated visibilities for a few typical baselines are shown in
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Figure 6.26: Left: Combined visibilities of three artificial sources for baseline [1H 3H],
shown here for 10 hours. Right: Mock observed simulated visibility with those three
artificial sources.

Figure 6.27: The color palette used to represent complex visibilities in this paper is
shown in this plot. The phase of the complex visibility is represented by the hue and
the magnitude is represented by the brightness. For more details see Appendix A of
[135].

Fig. 6.26 using the same representation of waterfall plots that is used throughout this

paper and is described in Fig. 6.27. As expected, longer baselines give higher fringe

rates, and for a given baseline, we see a faster fringe rate at lower frequency.
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Chapter 7

Foreground removal with machine

learning

Astrophysical foregrounds have always been a challenge in HI detection. There

are several components with different emission characteristics. Foreground removal

has traditionally been done with blind techniques such as Principal Component

Analysis (PCA). However, advances in computing have made foreground removal

with deep learning easier to implement. One example of such progress is the

deep21 program by Makinen et al. (2021), which used deep learning on sky

maps that have been partially-cleaned with PCA [87] and on which this chapter

is based. In this chapter, we explore this idea further by adding cross-correlation

with a mock galaxy survey and quantify the results.

7.1 Astrophysical foregrounds

The primary challenge for intensity mapping is the presence of galactic and extragalactic

foregrounds with amplitudes a few orders of magnitude larger than the 21 cm signal.
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In order to do cosmological analysis, we need to devise ways to mitigate the presence of

foregrounds. Fortunately, the spectra of the foregrounds are mostly smooth compared

to the frequency structure of the HI, and in theory it should be possible to subtract

them.

Foregrounds signals can be mitigated by observing in an uncontaminated region in

k space known as the EoR window. However in practice, due to mode-mixing, radio

telescopes can couple the anisotropy in the foregrounds into the spectral structure with

an amplitude that far exceeds that of the cosmological signal. This is exacerbated by

instrumental systematics such as gain variations and beam imperfection.

Foreground cleaning is therefore required. First, we need a detailed knowledge of the

beam and the gain to effectively deconvolve and remove spectral structure introduced

by the instrument. Next, we need to subtract the astrophysical foregrounds, which will

be discussed in the next section.

So far, HI has not been detected using intensity mapping without cross-correlation

with galaxy surveys. Anderson et al. 2018 [12] reported intensity maps acquired

from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF

galaxy survey. CHIME performed a similar cross correlation by “stacking” HI maps on

the locations of galaxies and quasars from the eBOSS catalog[34]. The intermediate

step for intensity mapping requires cross-correlation before future standalone intensity

mapping surveys become feasible. In this chapter, we will explore whether machine

learning, together with galaxy cross-correlation, is a viable route in helping separate

the foreground.
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Figure 7.1: Different foreground components as a function of redshift at 120 MHz.
Figure from https://ned.ipac.caltech.edu/level5/March14/Zaroubi/Zaroubi5.
html.

7.1.1 Types of foregrounds

There are four main types of astrophysical foregrounds that dominate the 21 cm

signal [10]:

Galactic synchrotron

Galactic synchrotron radiation is by far the largest contribution to the total radio

emission. It contributes up to 75% of the foregrounds. The emission occurs when

high-energy electrons are accelerated through a magnetic field. The electrons are from

relativistic cosmic rays which are then accelerated by the Galactic magnetic field.

Unpolarized synchrotron radiation is spectrally smooth and fairly isotropic outside the

bright galactic plane. However, as synchrotron photons travel through the magnetized

interstellar medium, their polarization angles change. This effect is known as Faraday

https://ned.ipac.caltech.edu/level5/March14/Zaroubi/Zaroubi5.html
https://ned.ipac.caltech.edu/level5/March14/Zaroubi/Zaroubi5.html
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rotation, and it is frequency-dependent and not spectrally smooth. It is less polarized

in the galactic plane because of random, incoherent superposition. Instrumental effects

can mix the polarized emission into the unpolarized part, and this can introduce

erroneous cosmological structures.

Galactic and extra-galactic free-free emission

Also known as bremsstrahlung, this is the electromagnetic radiation produced by

the scattering of a charged particle by another charged particle. This interaction

can produce radio wavelengths similar to those of the redshifted 21 cm line, and the

radiation is spectrally smooth. It can occur both inside and outside the Milky Way

galaxy.

Extra-galactic point sources

Extra-galactic point sources are objects beyond the Milky Way galaxy, including

sources such as active galactic nuclei (AGN). They primarily emit both synchrotron

and free-free radiation. These objects follow the same matter distribution as the

cosmological signal. Thus, this type of foreground is correlated with the cosmological

signal at similar redshifts.

7.1.2 Foregrounds and HI simulations

Foregrounds

We lack a detailed analytical description of the foregrounds, but many numerical

solutions exist. To simulate the foregrounds, we used the CRIME simulation package

[10]. Five different types of previously mentioned foregrounds are implemented. The
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Figure 7.2: Full sky temperature maps (in mK) for different types of foregrounds at 441
MHz as generated by CRIME. Top row: galactic synchrotron, galactic free-free; Middle
row: extra-galactic free-free, extra-galactic point sources; Bottom row: Cosmological
HI signal.
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Foreground Component A
[
mK2

]
β α ξ

Galactic Synchrotron 1100 3.3 2.80 4.0
Point Sources 57 1.1 2.07 1.0
Galactic free-free 0.088 3.0 2.15 35
Extragalactic free-free 0.014 1.0 2.10 35

Table 7.1: Foreground simulation parameters used in CRIME simulation.

galactic synchrotron radiation is the largest contribution to the total emissions. The

unpolarized synchrotron should be spectrally smooth, and far from the galactic plane,

can be modeled as an isotropic field. To model this and weaker foregrounds such as

point sources and free-free emission, a power-spectrum model is used [118]:

Cℓ (ν1, ν2) = A

(
ℓref

ℓ

)β (
ν2

ref
ν1ν2

)α
exp

(
− log2 (ν1/ν2)

2ξ2

)
, (7.1)

with values given in Table 7.1. To include the shape of the emission from the galactic

plane, CRIME uses the Haslam map, which contains the full-sky synchrotron emission

at νH = 408 MHz. It then extrapolate the foregrounds to other frequencies using the

Planck Sky Model to generate full sky maps of the synchrotron spectral index β(n̂):

T0(ν, n̂) = THaslam (n̂)
(
νH
ν

)β(n̂)
. (7.2)

Cosmological HI signal

The CRIME simulation generates a dark matter field and then uses a log-normal

model to generate mock HI intensity maps. The random Gaussian density and velocity

perturbations are generated in a cubic box of comoving size L with N3
grid cubical cells

of size lc ≡ L/Ngrid . For the simulations, Ngrid = 3072 and L = 8850 h−1 Mpc per

side. The scales probed are approximately 2π/L < k < 2π/lc. The observer is placed
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at the center of the grid, and the signal is projected onto the observer’s lightcone.

The overdensity field and radial velocity in the lightcone is calculated by computing

the redshift to each cell through the distance-redshift relation. At the same time the

log-normal transformation on the Gaussian overdensity field is performed to generate

the non-uniform HI density field. In a cell at x with redshift z(x), the overdensity and

radial velocity are given by [10]:

1 + δHI(x) = exp
[
G(z)δG(x, z = 0)−G2(z)σ2

G/2
]

vr(x) = f(z)H(z)D(z)
(1 + z)f0H0

vr(x, z = 0),
(7.3)

where σ2
G ≡ ⟨δ2

G⟩ is the variance of the Gaussian overdensity at z = 0 and the factor

G(z) ≡ D(z)b(z) describes the growth of perturbations and possible linear galaxy bias

b. The box is divided into spherical shells at different frequencies corresponding to

the redshifts from the observer, using the HEALPIX pixelization scheme with resolution

Nside = 256, which corresponds to a per-pixel frequency-independent resolution of

θpix ≈ 14′. To each pixel, the mean brightness temperature associated with the

hydrogen mass is calculated as

T21(z, n̂) = (0.19055 K) Ωbh(1 + z)2xHI(z)√
ΩM(1 + z)3 + ΩΛ

(1 + δHI) . (7.4)

The full sky maps of the foreground and cosmological simulations are shown in

Figure ??.
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Noise

To model a realistic observation, we need to add observational noise (mostly thermal

noise). Observational noise can be modeled as Gaussian noise with mean zero and a

variable range. The noise model has the following parameters:

αnoise ∼ logU(0.05, 0.5)

σnoise = αnoise ⟨Tb(ν)⟩

ϵb,i ∼ N (0, σnoise )

T̂b,i = Tb,i + ϵb,i.

(7.5)

The variance of the noise is proportional to the average fiducial cosmological temperature

at a given frequency ⟨Tb(ν)⟩ to simulate noise with variable range. The observed

temperature at pixel i, T̂b,i, is the sum of the true temperature, Tb,i, with some Gaussain

noise ϵb,i. Putting it all together, the observed temperature at a given frequency ν and

line-of-sight direction n̂ consists of three components: foreground, cosmological HI

signal, and observational noise:

Tobs (ν, n̂) = Tfg(ν, n̂) + Tcosmo (ν, n̂) + Tnoise (ν) (7.6)

7.2 Foreground Removal

7.2.1 Foreground Removal with PCA

As previously mentioned, the foreground and the HI signal should have different

spectral signatures. While the foreground is spectrally smooth, the HI signal, while

being many orders of magnitude smaller, has spectral structures. Blind foreground
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subtraction methods such as PCA assume that the observed brightness temperature

can be decomposed along each line of sight n̂ as a function of frequency ν as:

Tobs (ν, n̂) =
Nfg∑
k=1

fk(ν)Sk(n̂) + Tcosmo (ν, n̂) + Tnoise (ν, n̂), (7.7)

where Nfg is the number of foreground degrees of freedom to subtract, fk(ν) are a set

of smooth basis functions of the frequency, and Sk(n̂) are the foreground sky maps.

For a particular line of sight n̂ measured at a discrete set of Nν frequencies, this model

can be written as a linear system:

x = Â · s + C0, (7.8)

where xi = Tobs (νi, n̂), Aik = fk (νi), and sk = Sk(n̂). The residual, C0, is the sum

Tcosmo (ν, n̂)+Tnoise (ν). Foreground removal is performed by reconstructing the residual

C0 as accurately as possible.

PCA computes the principle components and uses them to implement a change of

basis. The principle components are the directions that successively maximize variance

in the data. The largest modes in a PCA decomposition represent the most correlated

variables. The foreground is expected to be smooth and has high spectral correlation;

removing the few largest eigenvalue is expected to preserve the cosmological signal on

large angular scales since it has much lower correlation in frequency space.

We follow the PCA procedure of Alonso et al. [9] and Makinen et al. [87]. The idea

is to find both the foreground components sk and an optimal set of basis functions Aik

at the same time.
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The combined foreground and HI maps are divided into 64 frequency bins. The

frequency-frequency covariance matrix, C, is defined as the average over Npix pixels in

the simulation:

Cij = 1
Npix

Npix∑
n=1

Tobs (νi, n̂n)Tobs (νj, n̂n)
σiσj

, (7.9)

where σi are root-mean-square fluctuations of C0 in mK in the ith frequency bin and

each σi is estimated iteratively from the data. If the frequency-frequency covariance

matrix contains components that are highly correlated in frequency, most of the information

will be concentrated in a small set of very large eigenvalues while the other ones are

negligibly small. We can then subtract the foreground by removing the components

which correspond to the eigenvectors of the frequency covariance matrix with the Nfg

largest associated eigenvalues.

The frequency-frequency covariance matrix C can be diagonalized via eigenvalue

decomposition:

Λ = UCUT = diag (λ1, . . . , λNν ) , (7.10)

where λi > λi+1 for all i are the (ordered) eigenvalues of C, and U is an orthogonal

matrix whose columns are the corresponding eigenvectors.

We then identify and remove the Nfg eigenvalues corresponding to the foregrounds

because they are much larger than the rest of the eigenvalues. We can then build the

matrix Ufg from the columns of U corresponding to the Nfg eigenvalues and find the

brightness temperature along the line of sight as:

x = Ufg · s + C0. (7.11)
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The foreground sky maps s are found by projecting x onto the basis eigenvectors

of the covariance matrix C:

s = UT
fg · x. (7.12)

Even though PCA is able to identify and separate foreground maps, it does not

produce clean HI intensity maps since it removes the mean of the observed signal. In

a real experiment, the situation will be even more complicated. Cosmological signal

also exhibits smoothly varying structure on large scales. Polarization leakage from

galactic synchrotron can introduce erroneous structures into the cosmological signal.

Intrumental noise can also be correlated in frequency.

In our analysis, we use PCA-cleaned maps before feeding them into the neural

network. We repeat wthe choice of Makinen et al. [87] of removing the first three

principal components from the foreground maps. Three principal components removes

most of the foregrounds and reduces the amplitude in the observed maps from thousands

of Kelvin to a fluctuation of a few milliKelvin around zero. Removing only two principal

components only reduces the amplitudes to a few hundred Kelvins. Subtracting more

modes will remove too much small-scale cosmological clustering. PCA cleaning will

also be helpful for the subsequent step, as it scales the input maps to around the range

[−1, 1] where neural network works best.

7.2.2 Foreground cleaning with convolutional neural network

After PCA cleaning, which removes most of the foreground contamination, the

residual maps are then fed into the input of a convolutional neural network (CNN). The

CNN aims to recover the cosmological HI signal from the PCA residuals by minimizing



220

Figure 7.3: Full sky maps at 441 MHz with three largest principal components removed.

Figure 7.4: UNet architecture showing the encoder (contracting path) and the decoder
(expanding path). The PCA pre-cleaned voxels of size (64, 64, 64) are fed into the
network. The hyperparameters to be tuned, h and w, are the number of number of
down-convolutions and the number of convolutions for each convolution block.
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the difference between the CNN’s output maps and the simulated cosmological signal.

Later, we will further improve the performance by introducing cross-correlation with

mock galaxy surveys.

The full dataset consists of 100 full-sky cosmological and foreground simulations

generated by CRIME. Each sky has an unique random seed. All the simulations assume

a standard flat ΛCDM Universe with fiducial parameters {Ωm,Ωb, h, ns, σ8} =

{0.315, 0.049, 0.67, 0.96, 0.83}. For each random seed, there are 64 frequency bins

ranging from 350 MHz to 492.5 MHz with a step size ∆ν ≈ 2 MHz, which corresponds

to redshift 1.89 < z < 3.05. This frequency range is chosen because it is the most

contaminated with the foregrounds, especially galaxy synchrotron radiation. Each sky

is divided into 192 HEALPix cubic voxels, so it has the shape
(
Nvoxels, Nθx , Nθy , Nν

)
=

(192, 64, 64, 64). In total, we have 192 voxels/sky × 100 skies = 19200 voxels in the

dataset. We do a standard 80:10:10 training:validation:test sets split. The validation

set is used to tune and optimize the hyper-parameters of the model, where the test set

is used to give an unbiased estimate of the performance of the final optimized model.

The CNN architecture used is the U-Net architecture, which works well on image

data to achieve separation of different structures within the image. Similar to an

autoencoder, it consists of a contracting (encoder) path and an expanding (decoding)

path (see Figure 7.4). For each contracting step, the side of each voxel is halved while

the number of filters is doubled. The filters use a stride step of 2. The hyperparameters

h and w characterize the number of down-convolutions and the number of convolutions

for each convolution block, and they are the parameters to be tuned. 3D convolutional

kernels are used because they better capture the full angular information θx, θy as well

as the spectral information ν. The data then go through the symmetric expanding

path. Skip connections (or shortcut connections) concatenate features between the
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encoder and the decoder parts. They feed some information from encoder layer to

decoder layer by skipping a few layers in between. Without the skip connections, some

information would be lost during the downsampling stage. They also allow the network

to extract the information on all different scales. Batch normalization is carried out at

each layer to handle internal covariate shift. The final outputs from the U-Net are the

foreground-cleaned voxels.

Loss function

The first objective of the foreground cleaning procedure is to minimize the difference

between the predicted, p, and true value, t, of each ith voxel. This difference is

quantified by the loss function L(p, t). There are many ways to define the loss function:

Mean Absolute Error (MAE): L(p, t) = 1
n

∑
i |pi − ti|, where the absolute value operation

is carried out pixel-wise; Mean Square Error (MSE): L(p, t) = 1
n

∑
i (pi − ti)2; and

log cosh loss:

L(p, t) =
∑
i

log cosh (pi − ti) . (7.13)

MSE converges faster than MAE but is more prone to over-smoothing. MAE is

robust to outliers in the data, since MSE squares the error and hence will see much

larger error than MAE. MAE is hence more likely to remain stable and has only small

changes when exposed to noise. log(cosh(x)) is approximately equal to 1
2x

2 for small x

and to |x| for large x and is twice differentiable everywhere. It works similarly to the

mean square error, but is less affected by occasional wildly incorrect predictions. As a

result, log cosh loss is chosen for its robustness and stability.
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Figure 7.5: On the left, a 2D slice of the galaxy map at 370 MHz. On the right, we
have an equivalent HI slice that the galaxy map was derived from.

Figure 7.6: Left: Histogram for the distribution of the number of galaxies in one
voxel of size

(
Nθx , Nθy , Nν

)
= (64, 64, 64) over one sky consisting of 192 voxels.

Right: Histogram for the summed HI temperature over the same sky. Note that the
distributions look quite similar.

7.2.3 Mock galaxy surveys

Mock galaxy maps were created from simulated cosmological HI sky maps. For each

voxel in the HI simulation, we draw a random sample from the Poisson distribution

with the probability mass function given by f(k;λ) = Pr(X = k) = λke−λ

k! . k is

the number of galaxies in a given voxel, and the expected value in each voxel, λ, is

proportional to the HI temperature. This assumes that the number of galaxies found
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within a given volume is proportional to the amount of neutral hydrogen present. A

more physical model would include a galaxy bias factor, since galaxy count is only a

biased tracer of the underlying dark matter. However, we assume that the scale is large

enough (each side of a voxel is ∼ 7 Mpc) so that the bias factor is linear. On smaller

scales, non-linear effects become more important. Figure 7.5 shows the mock galaxy

maps obtained from the simulated HI maps. Figure 7.6 shows the similarity between

the distribution of the number of galaxies in each voxel over one sky (192 voxels) and

the distribution of the summed HI temperature over the same sky.

The second objective of this foreground cleaning procedure is to maximize the

correlation between the output HI maps and the mock galaxy maps. Let the mock

galaxy catalog be g. The correlation is defined as

Corr(g, p) =
∑
i (gi − ḡ) (pi − p̄)√∑

i (gi − ḡ)2
√∑

i (pi − p̄)2
. (7.14)

In the ideal case, the correlation should approach that between the mock galaxy maps

and the originally simulated HI maps (about 0.65). The loss function to maximize the

agreement between the predicted value and galaxy catalog value can be defined as:

L(g, t) = 1− Corr(g, p). (7.15)

The correlation leaves too much freedom for the prediction, since it is invariant to

additive and multiplicative shifts by a constant value. We could try the concordance

correlation coefficient which addresses this issue. Here we will combine the log cosh

loss function with the correlation loss:

L(p, g, t) = α

(∑
i

log cosh (pi − ti)
)

+ β (1− Corr(g, p)) , (7.16)
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Figure 7.7: Diagram showing the overall foreground cleaning procedure

where α and β are the weighting factors for the log cosh and correlation loss functions,

respectively. We refer to this as the custom loss. Those weighting factors are to be

determined.

We tested tuning the hyperparameters with a smaller dataset (10 skies with 80:10:10

split) on a Google Colab Pro notebook with NVIDIA P100 GPU with 16GB integrated

RAM. The full dataset with 100 skies is run on a Google Cloud Compute machine with

2x NVIDIA A100 GPUs with 40GB integrated RAM each. We add the foreground,

HI cosmological signal, and simulated observational noise with αnoise = 0.25 to form

mock observed maps. These serve as the input for PCA pre-cleaning (3 largest principal

components removed). The PCA pre-cleaned maps are then fed into the UNet network,

which outputs HI maps that we hope are free of foreground. The overall process is

summarized in Figure 7.7.

For the test run, we chose w = 3 and h = 3 with a batch size of 16 (meaning the

hyperparameters are updated every time the network runs through 16 training voxels).

The number of training epochs is 10, so the network runs through the entire training

dataset 10 times. This is enough to ensure that the loss function plateaus. We use

an Adaptive Moment (Adam) Optimizer with a fixed learning rate with weight decay



226

Figure 7.8: −Corr(g, p) as a function of training epochs for the pure log cosh loss
function (left) and the custom loss function (right).

Figure 7.9: log cosh loss value as a function of training epoch for pure log cosh loss
(left) and custom loss (right).

to minimize the loss function. Batch normalization is employed in each convolutional

step. The exact value of the hyperparameter set depends on the size of the training

set to achieve a balance between minimizing the loss function and avoiding overfitting

the training set. The test run contains 11.68 million trainable parameters.

7.3 Results

We compare the difference between the results from using the custom loss function

and the log cosh loss function that is used in the original paper by Makinen et al. [87].

Figure 7.8 shows the negative of the correlation (−Corr(g, p)) as a function of training
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epochs for pure log cosh loss (Eq. 7.13) on the left and for the custom loss (Eq. 7.16) on

the right. We see that log cosh loss function attains a higher correlation on the training

set as the number of training epochs goes up, but it does not generalize as well to the

validation set, implying that the model may have slightly overfitted the training data.

On the other hand, the correlation for the custom loss function only goes up slightly

as the number of training epochs increases, but it generalizes better to the validation

data. The correlation on the validation set is roughly on par with the correlation on

the training set, meaning that the model with the custom loss generalizes better to

unseen data.

Figure 7.9 shows the value of the log cosh loss function for pure log cosh loss on the

left and the custom loss on the right. As expected, the log cosh value is lower when we

minimize with respect to the log cosh loss function. However, we see a similar behavior

with the correlation case: the custom loss tends to not overfit the training data and and

it generalizes better to validation data. This is due to the extra information contained

in the galaxy cross-correlation.

Signal recovery

Figure 7.10 shows the average temperature in mK at each frequency for the pure

log cosh loss on the left and the custom loss on the right. The average temperature

for the PCA pre-cleaned map is zero at all frequencies, as expected, since the PCA

procedure in the frequency direction removes the mean value at each frequency. For

both types of loss function, the UNet predicted average temperature at each frequency

are very close to the original HI signal despite the fact the PCA pre-cleaning step

removes the mean of the observations.
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Figure 7.10: Average temperature ⟨Tb⟩ in mK versus frequency for the pure log cosh
loss (left) and the custom loss (right).

Figures 7.11 and 7.12 show the cleaning performance for the pure log cosh loss and

the custom loss, respectively, on a random HEALPix map at three different frequencies.

In each panel, the original cosmological HI signals are shown in the left column, the

PCA pre-cleaned maps in the middle column, and the UNet reconstruction in the right

column. With both loss functions, the reconstructed maps are very similar to the

original cosmological signal, and both do better at higher frequency where foreground

contamination is less severe.

Power spectrum

As discussed in previous chapters, the power spectrum can quantify important

information about the correlation between the matter over-density at all different scales.

Since the matter distribution is three-dimensional, we need to consider both the angular

and radial power spectra in order to capture the clustering information perpendicular

and parallel to the line of sight, but here we only discuss the angular power spectrum.

The angular power spectrum of the brightness temperature is found by decomposing

it in terms of the spherical harmonic basis function Ylm(n̂):
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Figure 7.11: 2D slices at three different frequencies ν = 350, 370, 391 MHz comparing
the true cosmological signal (left), PCA pre-cleaned map (middle), and UNet prediction
(right) for the pure log cosh loss function.
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Figure 7.12: 2D slices at three different frequencies ν = 350, 370, 391 MHz comparing
the true cosmological signal (left), PCA pre-cleaned map (middle), and UNet prediction
(right) for the custom loss function.
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aℓm(ν) =
∫
Tb(ν, n̂)Y ∗

ℓm(n̂) dn̂2. (7.17)

The angular power spectrum at a particular ℓ is found by adding all the squared

coefficients of each m mode and dividing by the number of such modes:

Cℓ = 1
2ℓ+ 1

ℓ∑
m=−ℓ

|aℓm|2 . (7.18)

To characterize the cleaned map, we define the residual map as p− t, where p and t

are the predicted and true (simulated) maps, respectively. The power spectrum of the

residual map as a fraction of the true cosmological HI power spectrum is defined as

ρres(ℓ) = Cℓ(p− t)
Cℓ(t)

. (7.19)

We can also define the bias introduced by the cleaning method as a fraction of the

true power spectrum as

ε(ℓ) = Cℓ(p)− Cℓ(t)
Cℓ(t)

. (7.20)

A good foreground removal will result in ρres(ℓ) and ε(ℓ) being as close to zero

as possible. Figure 7.13 shows ρres as a function of ℓ for both log cosh loss on the

left column and custom loss on the right column. The results are quite similar for

both loss functions, with the UNet outperforming PCA on all angular scales and at

all frequencies. Figure 7.14 shows the bias ε(ℓ as a function of ℓ for the two loss

functions. The PCA method seems to have lower bias than the UNet network on the

small scales at the middle frequency. However, for the custom loss function, the bias is

on par with the PCA method and better than the pure log cosh loss on the intermediate
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angular scales. This is where galaxy cross-correlation may have an added benefit. In

all cases, the UNet network is mostly scale-independent, in contrast to PCA, where

the effectiveness of foreground removal is highly dependent on the scale.
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Figure 7.13: Ratios of the power spectrum of the residual maps p − t over the power
spectrum of the true map t (Eq 7.19) for pure log cosh loss (left) and custom loss
(right) at three different frequencies. The ratios for PCA pre-cleaned maps are shown
in purple, and in teal for UNet reconstructed maps.



234

Figure 7.14: Bias introduced by PCA and UNet (Eq 7.19) for pure log cosh loss (left)
and custom loss (right) at three different frequencies. The ratios for PCA pre-cleaned
maps are shown in purple, and in teal for UNet reconstructed maps.
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7.4 Future work

Since intensity mapping is in its infancy stage, there has been no undisputed

detected HI signal from any standalone observation. In the immediate future, we need

to look at cross-correlation with galaxy redshift surveys to separate the cosmological

HI signal from the continuum foreground emission.

This chapter presented preliminary results on adding galaxy survey cross-correlation

information to an existing method using a UNet convolutional neural network. We

see that galaxy cross-correlation offers minor improvement on the bias of the power

spectrum at certain frequencies. However, more work needs to be done to confirm the

benefit of galaxy cross-correlation. Given more time, I would run the model on the

full data set with 100 skies or more. In addition, I would also need to build confidence

intervals for the network’s prediction by training an ensemble of UNets, i.e. training a

number of different models and building a statistic on the predicted outputs.

There are a few challenges in doing so: The CRIME simulations are very resource

intensive and take a lot of time to complete, even on the computing cluster at the Center

for High Throughput Computing (CHTC) at UW-Madison. The full UNet model with

100 skies requires two NVIDIA A100 GPUs with 80GB of dedicated graphics memory,

which is half the capacity of CHTC. Running the training and hyperparameter tuning

on the Google Cloud Compute Engine is expensive.

The CRIME simulation only generates synthetic maps observed by a single dish

telescope. In the future, we will extend this to simulations of interferometers. This

is more complicated due to the frequency-dependent beam effects, which will generate

false structures in the frequency direction. Li et al. [80] have experimented with

separating the EoR signal with a denoising autoencoder on a simulated SKA dataset.



236

In summary, the biggest advantage of using neural networks in cleaning the foreground

signal is that we do not need an exact analytical description of the various physical

foreground components. However, there are a few disadvantages that come with it.

The intermediate steps inside the neural network are not generally interpretable. It

requires a lot of simulated data and is computationally costly. It might also fail to

clean skies where the cosmological parameters or the foreground physics are different

from those in the training data. However, given the rapid development and application

of deep learning techniques, we are positive that these challenges can be overcome and

machine learning will be a standard tool in the astrophysicists’ toolbox in the future.
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Chapter 8

Conclusion

8.1 Summary

The goal of observational cosmology is to better understand the Universe, its origin,

history, content, geometry, and its evolution. There are many approaches to accomplish

that goal. We can get a lot of information about the early Universe by studying the

CMB anisotropy. It offers a window through which we can test different inflationary

models, the content of the Universe, and the density perturbations that grow to become

galaxies millions of years later. The BAO peaks can provide information on different

cosmological parameters in the ΛCDM model such as the topology of the Universe,

the Hubble parameter, and the dark matter and dark energy fractions. We talked

about how Boltzmann codes such as CMBAns allow us to infer the values of different

cosmological parameters in the ΛCDM model from observed power spectra.

However, there are components in ΛCDM that we do not yet understand. One

notable example is the nature of dark matter and its distribution. There are many

current and planned experiments to study dark matter that take advantage of the
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entire electromagnetic radiation spectrum. Using galaxies as tracers of the underlying

dark matter intensity field, galaxy surveys, both photometric and spectroscopic, have

provided us with a wealth of information at low redshifts in recent years. However, there

are other tracers that could be even more powerful than galaxy surveys. One such tracer

is neutral hydrogen and the associated 21 cm emission intensity mapping. In principle,

intensity mapping can complement CMB observation by providing gravitational potential

maps that could be used to de-lense CMB B-mode in the hope of searching for inflationary

B-mode signal.

With 21 cm intensity mapping, we could in principle map much larger volumes in

a shorter time compared to other approaches. However, intensity mapping is still a

relatively young field and there are many technical issues to be addressed before we

can unlock its full power. The main challenge is that the foregrounds are several orders

of magnitude brighter than the 21 cm signal. Fortunately, the foregrounds are smooth

in frequency space, while the 21 cm signal contains spectral structures. This allows the

foregrounds to be, in theory, removed so that we can analyze the 21 cm signal. While

waiting for observations to catch up, we also need to improve the theoretical models for

HI, as well as foreground removal techniques to extract the most out of the HI signal.

In this thesis, we have:

• Introduced a modular Boltzmann code to predict the CMB power spectrum from

cosmological parameters.

• Evaluated the performance of the Tianlai transit radio interferometer by doing

calibration, characterizing the beam, and quantifying gain stability.

• Developed a new method to remove solar contamination from radio interferometric

data.
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• Studied foreground cleaning for future intensity mapping with machine learning

and cross-correlation with galaxy surveys.

Chapter 2 offered a general introduction into the basic concepts in cosmology, which

served to give a better understanding of the succeeding chapters. We briefly described

the homogeneous Universe, its composition and the evolution of its components. We

described how small imhomogeneities started by quantum fluctuations in the early

Universe later grew to form anisotropies in the CMB.

Chapter 3 introduced a cosmological Boltzmann code named CMBAns. It is capable

of calculating the CMB angular power spectra for different cosmological parameters

up to high multipoles. We focus on the perturbations in a flat-Universe. It is written

in a modular format that users can use to write their codes.

Chapter 4 is a brief introduction into the physics behind intensity mapping. We

described how perturbation in the matter density lead to structure formation. We

introduced the correlation function between the over-densities and how it is used to

calculate the matter power spectrum. We showed how the expected 21 cm signal

depends on the total amount of HI in the Universe and the HI bias. Finally, we can

use the HI halo model to make prediction on the HI bias and the shot noise.

In Chapter 5, we described in detail the fundamentals of radio interferometry.

Interferometric arrays are increasingly popular for intensity mapping, since they eliminate

the need for a single, very large aperture telescope. The Tianlai Dish Array is one such

array. It is optimized to perform cosmological studies with 21 cm intensity mapping

in the redshift range 2.55 ≥ z ≥ −0.01. Since it is still in the early stage, we described

work on calibrating the instrument, ensuring the stability of the absolute gain and

electronic phase drift. We also introduced the software pipeline that processes and

analyzes the data.
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Chapter 6 introduced a novel technique for solar contamination removal in any

interferometric array, given that the Sun signal is the dominant source in the sky. We

showed that the algorithm leaves most other sky signals intact. This enables us to use

the daytime data for cosmological analysis, which would otherwise be unusable.

In Chapter 7, we described the different types of foregrounds encountered with

intensity mapping observations. From the CRIME simulations of foregrounds and HI,

we built simple mock galaxy maps. We showed that we can use machine learning

techniques to clean the foreground by cross-correlating with galaxy surveys.

8.2 Future work

There are many open questions in cosmology that still need to be addressed, and the

CMB and intensity mapping are powerful, complementary tools to study the evolution

of the Universe from the surface of last scattering until the present time.

Current CMB experiments such as Planck, ACT, and SPT have measured the CMB

data up to very high multipoles. All these cosmological data can be very well fitted

with a flat ΛCDM model. However, several recent papers also claim slight deviations

from a flat Universe. Therefore, it is desirable for the cosmological Boltzmann codes

to be able to calculate the power spectrum for non-flat models, so that even any

small deviation from the special flatness can be measured. Currently, the best fit

value of Ωk from Planck TT, TE, EE+lowE+lensing is Ωk = −0.011+0.013
−0.012. When

we add BAO measurements from galaxy redshift surveys to this the best fit value

comes down to Ωk = 0.0007+0.0037
−0.0037 [6]. The curvature mainly changes the CMB power

spectrum by moving the power-spectrum horizontally. This is due to the change in

the distance of the last scattering surface. In the near future, we will extend CMBAns
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for the case of a non-flat background metric. In addition, we will address cases in

which fundamental constants vary as a function of redshift. Fundamental constants

have played an important role in physics. They are either directly connected to the

strength of different interactions that happens in nature, such as G, and there are

theories in which the fundamental constants may actually be spacetime variables. So

far only CMBAns is capable of calculating the CMB power spectrum for models with

varying fundamental constants. Most of the code for this case is already written, and

we will document this process in a future paper.

Even though the information from the CMB is important in its own right, observations

during the dark ages and reionization era are crucial for filling the knowledge gap on

the formation of structures in the Universe. The neutral hydrogen 21 cm transition is

the only signal that can be used to probe this era, since the Universe then contains no

bright sources. The measurement of 21 cm temperature maps as a function of redshift

will allow us to get information on the evolution of the Universe during the dark ages

and EoR. Several dedicated instruments have been built over the last two decades,

but no standalone observation of the HI signal has been made. The Tianlai array

is one such instrument, designed to cover a broad frequency range (400-1430 MHz).

A few thousand hours of observation, mostly toward the NCP, have been performed.

Progress in instrument design, electronics, and data processing are being made to

reach a higher sensitivity. More performance assessments and better calibration are

needed. It will be necessary to determine the beam response of individual antennas

through a combination of electromagnetic simulations and on-site beam measurements.

Frequency structures in the receiver, such as standing waves, should be minimized and

carefully filtered out. The level of cross coupling between antennas needs to be reduced.

The contribution of bright sources such as the sun through the antenna far sidelobes,
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which is frequency dependent, needs to be better understood and modelled. The

Tianlai project also serves as a stepping stone for other intensity mapping experiments,

such as HIRAX and SKA.

In all intensity mapping experiments, the 21 cm is totally overwhelmed by foreground

emissions, which are generally a few thousand times brighter than the cosmological HI

signal. Separating the 21 cm signal from the foregrounds is an ongoing tasks. In the

past decade, progress in machine learning have been significant. We have shown that it

is possible to clean foregrounds on a simulated data set with galaxy cross-correlation.

This work is still inconclusive, and we would like to run it on a larger data set and with

more computing power. We would also like to extend the model to include polarized

foregrounds or varying cosmological parameters. In the future, we can use pre-trained

models to perform transfer learning to real data and cross-check with observed power

spectra.



243

Appendix A

The fluid equation

In this section, we will derive the relationship between pressure and density for

cosmological fluids such as matter and radiation. First, consider an expanding volume

of comoving radius. The volume has radius a, so the rate of change in volume is

dV
dt = 4πa2 da

dt (A.1)

The total energy confined within the volume is

E =
(4

3πa
3ρ
)
c2 (A.2)

The rate of change in the energy with respect to time is

dE
dt = 4πa2ρc2 da

dt + 4
3πa

3c2 dρ
dt (A.3)

Apply the first law of thermodynamics to the above equations

dE + pdV = TdS (A.4)
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and assuming reversible adiabatic expansion dS = 0, we get

ρ̇+ 3 ȧ
a

(
ρ+ p

c2

)
= 0 (A.5)

This is the fluid equation. In unit in which c = 1, the fluid equation becomes

ρ̇+ 3 ȧ
a

(ρ+ p) = 0 (A.6)

We can assume that there is a unique pressure associated with the corresponding

density, so that p = wp where w is a constant as described in (2.28).

• Matter: We can solve the fluid equation for matter, which has pm = 0:

ρ̇m + 3 ȧ
a
ρm = 0 ⇒ 1

a3
d
dt(ρma

3) = 0 ⇒ d
dt(ρma

3) = 0 ⇒ ρm ∝ a−3

(A.7)

• Radiation: For isotropic radiation, pr = ρrc
2/3 (= ρr/3 in unit in which c = 1).

The fluid equation becomes

ρ̇r+4 ȧ
a
ρr = 0 ⇒ 1

a4
d
dt(ρra

4) = 0 ⇒ d
dt(ρra

4) = 0 ⇒ ρr ∝ a−4 (A.8)

• Vacuum: For vacuum, the energy density ρΛ is constant. It is not dependent

on the expansion of the universe, so ρΛ ∝ a0
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Appendix B

Cosmic variance

The cosmic variance is define as

∆Cℓ
Cℓ
≡

√
⟨(Cℓ − Ĉℓ)2⟩

Cℓ
(B.1)

in which

⟨(Cℓ − Ĉℓ)2⟩ = C2
ℓ − 2Cℓ⟨Ĉℓ⟩+ ⟨Ĉ2

ℓ ⟩ = −C2
ℓ + ⟨Ĉ2

ℓ ⟩ (B.2)

and

⟨Ĉ2
ℓ ⟩ = 1

(2ℓ+ 1)2

ℓ∑
m=−ℓ

ℓ∑
m′=−ℓ

⟨aℓmaℓ(−m)aℓm′aℓ(−m′)⟩

= 1
(2ℓ+ 1)2

ℓ∑
m=−ℓ

ℓ∑
m′=−ℓ

⟨aℓmaℓ(−m)aℓm′aℓ(−m′)⟩

= 1
(2ℓ+ 1)2

ℓ∑
m=−ℓ

ℓ∑
m′=−ℓ

(
⟨aℓmaℓ(−m)⟩⟨aℓm′aℓ(−m′)⟩

+ ⟨aℓmaℓm′⟩⟨aℓ(−m)aℓ(−m′)⟩+ ⟨aℓmaℓ(−m′)⟩⟨aℓ(−m)aℓ−m′⟩
)

(B.3)
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where we have used the Isserlis’ theorem in statistics to get to the last line. In

addition,
ℓ∑

m=−ℓ

ℓ∑
m′=−ℓ

⟨aℓmaℓ(−m)⟩⟨aℓm′aℓ(−m′)⟩ = (2ℓ+ 1)2C2
ℓ (B.4)

ℓ∑
m=−ℓ

ℓ∑
m′=−ℓ

⟨aℓmaℓm′⟩⟨aℓ(−m)aℓ(−m′)⟩ =
ℓ∑

m=−ℓ
⟨aℓmaℓ(−m)⟩⟨aℓ(−m)aℓm⟩

= (2ℓ+ 1)C2
ℓ (B.5)

Similarly,
ℓ∑

m=−ℓ

ℓ∑
m′=−ℓ

⟨aℓmaℓ(−m′)⟩⟨aℓ(−m)aℓ−m′⟩ = (2ℓ+ 1)C2
ℓ (B.6)

So that

⟨Ĉ2
ℓ ⟩ = C2

ℓ [(2ℓ+ 1)2 + 2(2ℓ+ 1)]
(2ℓ+ 1)2 = C2

ℓ

(
1 + 2

2ℓ+ 1

)
(B.7)

and

⟨(Cℓ − Ĉℓ)2⟩ = −C2
ℓ + C2

ℓ

(
1 + 2

2ℓ+ 1

)
= 2C2

ℓ

2ℓ+ 1 (B.8)

The cosmic variance is therefore,

∆Cℓ
Cℓ
≡

√
⟨(Cℓ − Ĉℓ)2⟩

Cℓ
=
√

2
2ℓ+ 1 (B.9)
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Appendix C

CMBAns Modularity Example

This appendix shows the modularity functionality of CMBAns. Users can simply call

the CMBAns function by calling ModuleName.function. A module in this context is a

class in C.

C.0.1 calconftime

This function resides inside module Others, which contains different standard

cosmological functions that are frequently used in different calculations, such as the

conformal time at different redshift, distance to the sound horizon, etc. calconftime

will calculate the conformal time difference between any scale factor to the present

era by integrating dτ/da from scale factor a to the present time. We use the function

rombint for integrating the function.

τ =
∫ 1

a

dτ
da da (C.1)
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Format

double calcconftime(double a)

Arguments

Name Kind In/Out Description
a double IN the scale factor

Examples

#include<stdio.h>
#include<math.h>
#include "variables.h"
#include "others.h"
#include "neutrino.h"

int main() {
CMB cmb;
others Others;
neutrino Neutrino;

cmb.OmegaB = 0.05;
cmb.OmegaC = 0.25;
cmb.OmegaDE = 0.7;
cmb.OmegaNmassive = 0.0;
cmb.H0 = 67.9;
cmb.Tcmb = 2.7254;
cmb.nNeutrinoMassive = 0.0;

cmb.setparam();

printf("%e",Others.calcconftime(0.5));
}
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C.0.2 ionize

Located inside recombination module, this function calculates the ionization fraction

of hydrogen at a conformal time τ+dτ using Peebles equation. The hydrogen ionization

fraction is defined as xH = ne/nH , where ne is the number of free electron density and

nH is the total hydrogen number density. For calculating the hydrogen ionization

fraction at any given τ , we can set xH = 1 as initial condition at a very high redshift

(at τ = τ0) and then calculate xH at any given τ = τ0 + ndτ by repeatedly calling this

function.

Format

double ionize(double tempb,double a,double adot,double dtau,double xe)}

Arguments

Name Kind In/Out Description
tempb double IN the baryon temperature

a double IN the scale factor

adot double IN conformal time derivative of the
scale factor

dtau double IN time increment dτ

xe double IN hydrogen ionization fraction at τ

OUT hydrogen ionization fraction at
τ + dτ

Examples

#include<stdio.h>
#include<math.h>
#include "recombination.h"
#include "variables.h"
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#include "others.h"

int main() {
CMB cmb;
others Others;
recombination Recombination;
cmb.setparam();

// print the reionization fraction at redshift z = 1370 (a = 1/(z+1))
double adot = 1/Others.dtauda(.00072939);
printf("reionization fraction x_e = %f",

Recombination.ionize(3740, .00072939, adot, 1, 0.5));
}
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C.0.3 void nu1

This function is located inside Neutrino module. For massive neutrinos, its not

possible to calculate the pressure and density by direct analytical integration. Therefore,

we need to calculate them numerically. The Neutrino module contains functions

related to neutrino pressure and density calculations. Specifically, the function void

nu1 can be used to calculate massive neutrino density and pressure at a given scale

factor a. It calculates these quantities by interpolating the arrays created by initnul().

Therefore, it requires initnul() to be called before calling nu1()for the first time. It

calculates the neutrino density and pressure in the dimensionless form.

Format

void nu1(double a,double rrnu[])

Arguments

Name Kind In/Out Description
a double IN The scale factor

rrnu[] double OUT

Output containing the density
(first component) and pressure

(second component) of the
massive neutrinos

Example

#include<stdio.h>
#include<math.h>
#include "variables.h"
#include "neutrino.h"

int main() {
neutrino Neutrino;
CMB cmb;
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double rhonu[2];
double rrnu[2];

cmb.OmegaB = 0.05;
cmb.OmegaC = 0.25;
cmb.OmegaDE = 0.7-0.0054;
// mass of non relativistic neutrinos
cmb.OmegaNmassive = 0.0054;
cmb.H0 = 67.9;
cmb.Tcmb = 2.7254;
cmb.nNeutrinoMassive = 3.0;

cmb.setparam();

Neutrino.initnul();

// interpolate the neutrino density and pressure
Neutrino.nu1(0.005, rrnu);

// calculating the exact neutrino density and pressure
Neutrino.ninul(0.005, rhonu);

// print the result of the interpolation
printf("%lf %lf\n", rrnu[0], rrnu[1]);
// print the exact result
printf("%lf %lf\n", rhonu[0], rhonu[1]); }
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C.0.4 rombint

Module Numericx contains the functions for different numerical techniques used in

CMBAns such as numerical differentiation, integration, spline interpolation, set of linear

differential equation solver, etc. rombint is a function inside the module Numericx.

It takes in a function f(x) as input and numerically integrates it from l to u using

Romberg’s method:

∫ u

l
f(x) dx.

Format

double rombint(double (*func)(double), double l, double u, double tol)

Arguments

Name Kind In/Out Description

*func double
(*func)(double)

IN function to be integrated

u double IN upperbound of the integral

l double IN lowerbound of the integral

tol double IN numerical tolerance
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Example

To integrate f(x) = sin(x) from 0 to 1, subjecting to a numerical tolerance of
tol = 10−8, we can use the following code

#include<stdio.h>
#include<math.h>
#include "numericx.h"

double f(double x) {
return sin(x);

}

int main() {
numericx Numericx;
double tol = 1e-8;
double ans = Numericx.rombint(f, 0, 3.14159265359, tol);
printf("%e",ans);

}

Output : 2.000000000e+000
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