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A B S T R A C T 

This paper introduces a technique called needlet Karhunen–Lo ́eve (NKL), which cleans both polarized and unpolarized 

foregrounds from H I intensity maps by applying a Karhunen–Lo ́eve transform on the needlet coefficients. In NKL, one takes 
advantage of correlations not only along the line of sight, but also between different angular regions, referred to as ‘chunks’. 
This provides a distinct advantage over many of the standard techniques applied to map space that one finds in the literature, 
which do not consider such spatial correlations. Moreo v er, the NKL technique does not require any priors on the nature of the 
foregrounds, which is important when considering polarized foregrounds. We also introduce a modified version of Generalized 

Needlet Internal Linear Combination (GNILC), referred to as MGNILC, which incorporates an approximation of the foregrounds 
to impro v e performance. The NKL and MGNILC techniques are tested on simulated maps which include polarized foregrounds. 
Their performance is compared to the GNILC, generalized morphological component analysis, independent component analysis, 
and principal component analysis techniques. Two separate tests were performed. One at 1.84 < z < 2.55 and the other at 0.31 < 

z < 0.45. NKL was found to provide the best performance in both tests, providing a factor of 10–50 impro v ement o v er GNILC 

at k < 0 . 1 hMpc −1 in the higher redshift case and k < 0 . 03 hMpc −1 in the lower redshift case. Ho we ver, none of the methods 
were found to reco v er the power spectrum satisfactorily at all baryon acoustic oscillations scales. 

Key words: techniques: image processing – techniques: interferometric. 
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 I N T RO D U C T I O N  

ne of the main endea v ours of observational cosmology is to measure
tatistical properties of the spatial distribution of matter in the
niverse. Such measurements are of interest as they could provide us
ith information about dark energy, inflationary physics, the growth
f structure, early star formation, and more. The distribution of
atter in the Universe is traced by neutral hydrogen (H I ). Using

1 cm emission or absorption to measure these density fluctuations
s a function of redshift is a technique referred to as 21 cm (or
 I ) intensity mapping (IM) (Bharadwaj & Sethi 2001; Battye,
avies & Weller 2004 ; Madau, Meiksin & Rees 1997 ). Most IM

nstruments are radio interferometers; some notable examples are
he Canadian Hydrogen Intensity Mapping Experiment (CHIME,
andura et al. 2014 ; Tianlai Chen 2012 ), the Hydrogen Epoch
f Reionization Array (HERA, DeBoer & HERA 2015 ), and the
urchison Widefield Array (MWA, Morales 2005 ). The antenna

lements that make up these interferometers can take several forms,
ncluding parabolic dishes (Tianlai, CHIME, and HERA), cylindrical
eflectors (CHIME and Tianlai) or phased arrays (MWA). Single-
ish instruments are also used, with some examples being the Five
undred meter Aperture Spherical Telescope (F AST , Bigot-Sazy
t al. 2015 ), the Greenbank Telescope (GBT, Switzer et al. 2013 ),
 E-mail: jpodczerwins@wisc.edu 
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nd the More Karoo Array Telescope (MeerKAT, Santos et al. 2016 ).
AST and GBT both consist of a single, very large dish. On the
ther hand, MeerKAT would average signals from 64 smaller (13.5 m
iameter) dishes. MeerKAT can also operate as an interferometer. 
Measurement of the 21 cm line would provide valuable cosmo-

ogical information. At low redshifts ( z ≤ 6), IM would serve
s a complement to galaxy redshift surv e ys. At such redshifts,
osmologists would be particularly interested in measuring baryon
coustic oscillations (BAO). The BAO would serve as a standard
uler, providing information about the expansion of the Universe and
ark energy. Measurements during the epoch of reionization 6 < z

 20 would provide information about the formation of the earliest
tars. Lastly, measurements during the cosmic dark ages (20 < z

 1100), before the formation of the first luminous objects, would
rovide insights into the physics of inflation. It should be noted that
o other probe aside from IM is capable of mapping the cosmic dark
ges. 

Although promising, IM is still a young technique, with its sys-
ematic effects and calibration requirements still being understood.
n particular, foregrounds from Galactic synchrotron emission are
n unsolved challenge for IM experiments. In the case of Galactic
ynchrotron emission, these foregrounds are up to a factor of 10 5 

righter than the H I signal. 
Luckily, the unpolarized component of these foregrounds is

xpected to be spectrally smooth, while the H I signal is expected
o have a high level of chromaticity. In other words, the foregrounds
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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re confined to a relatively small subsection of delay space (Datta, 
owman & Carilli 2010 ). In this context, delay refers to the Fourier
ual of spectral frequency. This delay-space quarantining aids in the 
 v oidance and removal of the foregrounds. Unluckily, this region 
f delay space will correspond to large spatial scales, which are 
mportant for measuring the BAO. 

One must also consider the polarized component of Galactic syn- 
hrotron radiation. This component is affected by Faraday rotation 
n the Galaxy, introducing higher chromaticity than the unpolar- 
zed component. Moreo v er, the chromaticity of this component is
xpected to vary with line-of-sight direction. In particular, lines 
f sight closer to the Galactic plane will suffer from more severe
hromaticity due to stronger F araday rotation. Moreo v er, the power
f the Galactic synchrotron radiation (both polarized and unpolarized 
omponents) relative to the signal is expected to vary with angular 
cale (Alonso, Ferreira & Santos 2014 ), with the largest scales having
he worst contamination. In principle, these polarized foregrounds 
ould be a v oided altogether as long as the beams of the telescope
ave rotational symmetry and low cross-polar le vels. Ho we ver, such
efined beams are not achie v able in practice, and one must contend
ith some amount of polarization leakage. This leakage is expected 

o be on the per cent level for IM experiments (Moore et al. 2013 ,
017 ). 
Over the years, many foreground removal methods have been 

roposed. A helpful re vie w of many of these may be found in Liu &
haw ( 2020 ). Methods that require no priors on the H I , noise or
oregrounds are described as ‘blind’, and those requiring priors are 
escribed as ‘non-blind’. One will also find methods being tested 
oth on raw visibilities or on maps synthesized from data. Ho we ver,
nlike blind and non-blind, there is not a clear distinction here. Some
ethods may be applicable both in map and visibility spaces. 
Principal component analysis (PCA), independent component 

nalysis (ICA, Chapman et al. 2012a ), and Generalized Morpho- 
ogical Component Analysis (GMCA, Chapman et al. 2012b ) are the 
rominent blind methods that one finds being applied to maps. In
he literature, one can also find non-blind methods being applied in 
ap space. Examples include Generalized Needlet Internal Linear 
ombination (GNILC, Oli v ari, Remazeilles & Dickinson 2015 ), 
aussian Process Regression (GPR, Mertens, Ghosh & Koopmans 
018 ), and the ‘semiblind’ Singular Value Decomposition (SVD) 
ethod proposed in Zuo, Chen & Mao ( 2023 ). On the other hand,

ests of cleaning methods on visibilities are less commonly found in 
he literature. One blind method that can be used in visibility space
s ‘foreground a v oidance’. In this method, one exploits the fact that
he foregrounds tend to be confined to a region of certain region
 -space, referred to as ‘the wedge’ (Ewall-Wice et al. 2016 ). Power
pectrum modes within this region of k -space are then excluded from
he analysis. Non-blind methods have also been tested in visibility 
pace. The beam projection plus Karhunen–Lo ́eve (KL) transform 

roposed in Shaw et al. ( 2015 ) and the GPR method used in Soares
t al. ( 2021 ) and Mertens et al. ( 2018 ) are examples we have found
n the literature. 

Ho we ver, for the case of post-epoch of reionization (EOR) surv e ys,
uch a v oidance methods come at the cost of losing valuable informa-
ion about BAO. The BAO are located roughly in the wavenumber 
ange 0 . 03 ≤ k ≤ 0 . 4 hMpc −1 (Bull et al. 2015 ). Much information
bout large length-scales such as these would be lost when taking a
oreground a v oidance approach. 

So far, when real data are considered, the foregrounds have usually 
een handled in a conserv ati v e way. F or instance, in P aul et al.
 2023 ), the first detection of H I using IM without cross-correlating
ith galaxies, the analysts chose to use foreground a v oidance rather
han remo val. F ore ground a v oidance was also used in Amiri et al.
 2023 ). In this work, the authors cross-correlated data from the
HIME telescope with galaxies and quasars from the Extended 
aryon Acoustic Oscillation Surv e y (eBOSS). In this work, it was

ound that the foreground a v oidance method excluded length-scales 
mportant for characterizing the BAO. Wolz et al. ( 2021 ) present
esults from cross-correlating GBT data with the eBOSS surv e y. In
his case, the authors opted to use FastICA paired with a transfer
unction to compensate for signal loss. In Cunnington et al. ( 2022 ),
he authors cross-correlated maps from MeerKAT with WiggleZ 

alaxies. The authors of this paper cleaned their data with PCA
nd used a transfer function to compensate for signal loss. Anderson
t al. ( 2018 ) cross-correlated maps from the Parkes telescope with
alaxies from the Two-degree-Field Galaxy Redshift Surv e y (2dF) 
alaxy surv e y. These authors correlated maps from different seasons
o reduce noise bias, and applied a transfer function to compensate
or signal loss. 

One can also find numerous papers in the literature testing these
arious methods on simulated data. Such tests are usually conducted 
t lower redshifts ( z � 0.6) and take into account beam effects by
onvolving with a Gaussian profile of appropriate width. In Carucci, 
rfan & Bobin ( 2020 ), tests were conducted using simulations that
ssumed a telescope similar to MeerKAT operating in single-dish 
ode at low redshifts (0.09 ≤ z ≤ 0.58) and surv e ying the full

ky. This test included contributions from polarized foregrounds 
imulated using the Cosmological Realizations for Intensity Mapping 
xperiments ( CRIME ) software package (Alonso et al. 2014 ). In this

nstance, GMCA reco v ered the angular power spectrum of the H I

lus noise with errors of 5 per cent down to � ≈ 25. Moreo v er, the y
ound that GMCA provided lower errors than ICA (Carucci et al.
020 ). In Oli v ari et al. ( 2015 ), GNILC was tested at low redshifts
0.13 ≤ z ≤ 0.48) in a surv e y co v ering half of the sk y. These
imulated maps included no polarized foregrounds. In this case, 
NILC was found to reco v er the angular power spectrum of the H I

o within 6 per cent error down to � = 30. So, like GMCA, GNILC
lso seemed to struggle at large angular scales. Recently, GNILC, 
MCA, and ICA were all tested on simulations of the Baryon
coustic Oscillations from Integrated Neutral Gas Observations 

BINGO) experiment (Marins et al. 2022 ). In this test, all of the
echniques were found to provide statistically equi v alent results. In
oares et al. ( 2021 ), GPR was tested on simulated maps at low
edshifts (0.18 < z < 0.58). The simulated maps included polarized
oregrounds generated using CRIME . These tests were conducted on 
tripe82 and a 3000 deg 2 region at the South Celestial Pole. In these

ests, GPR and PCA provided similar performance, recovering the 
ower spectrum with errors around 10 per cent for all spatial scales 
onsidered. 

A notable cleaning method applied in visibility space is the 
ombined beam projection and KL transform proposed and tested 
n Shaw et al. ( 2015 ). This test assumed a simplified version
f the CHIME instrument and was conducted at higher redshifts 
1.84 < z < 2.55) where polarized foregrounds are more severe.
he test used simulated maps produced by the Cosmology in the
adio Band ( CORA ) software package. This package makes different
ssumptions than CRIME , resulting in less severe chromaticity in 
he polarized foregrounds. In this paper, instrumental effects were 
ccounted for in a more realistic way, by generating visibilities from
aps using simulated beams from cylinder telescopes. This method 
as found to ef fecti v ely reco v er the H I power spectrum down to
 ≈ 0 . 02 hMpc −1 . This result appears quite promising, since the
AO would be reco v ered at all length-scales. Ho we ver, the weakness
f this approach is that it requires a highly accurate beam model along
MNRAS 527, 8382–8401 (2024) 
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ith priors on the unpolarized foregrounds, H I , and noise. It was
ound that this approach breaks down when main beam uncertainties
xceed 0.1 per cent. In addition, amplifier gains must be known to
etter than 1 per cent within each minute. Such accurate beam and
ain calibration pose a significant challenge and may not be possible
n practice. 

In summary, published map-space tests of cleaning methods on
imulated polarized foregrounds have only been conducted at low
edshifts. Moreo v er, these papers usually take beam effects into
ccount in a simple way. The only exception we found is in the work
f Hothi et al. ( 2020 ), who performed tests on maps generated from
isibilities. Such tests are informative, but not the whole story since
hese polarized foregrounds will become more severe as redshift
ncreases. On the other hand, Shaw’s method was found to work
xtremely well when faced with polarized foregrounds at higher
edshifts, but required precise knowledge of the beam. It is reasonable
o imagine that the previously described methods used in map space
ight be more robust to beam mis-calibration than Shaw’s method.
here are two reasons for this. One is that the beam projection part
f beam projection/KL approach remo v es the polarized fore grounds
y projecting onto the null space of the polarized beam matrix.
his step may not work when the beams are not well understood.
nother reason is that the KL part of the SVD/KL cleaning re-
uires one to have priors on how the unpolarized foregrounds will
ontribute to the total visibility. On the other hand, the map-space
pplicable methods described earlier in this paper (aside from the
semiblind’ SVD method from Zuo et al. 2023 ) either do not require
 foreground model, or, in the case of GPR, estimate one from the
ata. 
Although they may end up being more robust to calibration issues

han the visibility-space beam projection/KL method, the available
ethods usable in map space are missing certain strengths of the

eam projection/KL approach. One particular strength of beam
rojection/KL is that it takes full advantage of the available priors. In
articular, during the KL step, one considers correlations between all
aselines in the telescope. In this way, one is exploiting correlations
n both frequency and spherical harmonics (different baselines are
ensitive to different l modes). This is much different from commonly
sed map-space methods, such as PCA, GNILC, ICA, and GPR,
hich, as employed so far in the literature, only consider correlations

long the line of sight. Although there are some exceptions, such
s the commonly used GMCA method does incorporate angular
orrelations by enforcing sparsity of components in the wavelet
omain. Another exception to this is the ‘semiblind’ SVD method.
his method provides excellent recovery of the H I signal, but, like
haw’s method, suffers from requiring priors on the foregrounds
resent in the maps. 
Ho we ver, one must also keep in mind that working in map-space

resents certain advantages not available in visibility space. For one,
ap space allows for specific pixels to be selected. As such, one

an mask out pixels with particularly strong foregrounds or artefacts.
oreo v er, one can perform a spherical-harmonic or spherical wavelet

ransform of the data, allowing for precise separation by angular
cale. Such operations are not possible in visibility space. The closest
hing one could do is separate the visibilities into m modes, where
he m refers to the azimuthal m found in spherical harmonics (Shaw
t al. 2015 ). Such freedom could be useful when cleaning foregrounds
rom maps, due to their dependence on line-of-sight direction and
ngular scale. 

Based on this re vie w of the literature, there se veral tasks that ought
o be performed. 
NRAS 527, 8382–8401 (2024) 
(i) Create a foreground cleaning method that is usable in map
pace and uses both frequency and angular correlations. This method
hould not require a prior on the foregrounds. 

(ii) Test the available map-based methods on polarized fore-
rounds at redshifts z � 0.6. 
(iii) Test the robustness of various map-based methods against

eam mis-calibration. 

We make progress on task (i) by introducing the needlet Karhunen–
o ́eve (NKL) method of foreground removal. In NKL, different
ections of pixel/spherical harmonic space are separated via a needlet
ransform. The needlet coefficients are then cleaned using a KL
ransform that exploits both angular and frequency correlations. This
s different from most other map-based methods, which only consider
requenc y correlations. Moreo v er, this is all done without needing
ny priors on the foregrounds present in the map. Not requiring a
oreground prior is quite useful, as polarized foregrounds are not
ell understood. Moreo v er, NKL cleans the fore grounds differently
epending on location and angular scale. This is also a desirable
eature, as the foreground brightness and chromaticity are expected
o vary with line of sight and angular scale. 

In this paper, we also make some progress on task (ii) of the list
y testing GNILC, GMCA, ICA, and PCA at redshifts (1.84 < z <

.55). PCA, ICA, and GMCA were chosen as these are all prominent
n the literature. GNILC was chosen since it has similarities to the
KL method proposed in this paper. 
We leave task (iii) for future work. 
In Section 2 , we describe the process of foreground cleaning in

n abstract way and provide additional moti v ation for the NKL
echnique. In Section 3 , we provide a detailed description of the
KL technique. In this section, we also introduce modified GNILC

MGNILC), a slightly modified version of GNILC which uses a
oreground approximation acquired from the data. In Section 4 ,
e describe the maps we used to perform our tests. In Section 5 ,
e present results acquired by testing GNILC, ICA, PCA, GMCA,

nd NKL on simulated maps. We then summarize our results and
onclude in Section 6 . 

 F O R E G RO U N D  REMOVA L  T E C H N I QU E S  

n this paper, we will compare the performance of the proposed
KL technique with that of other techniques commonly found in

he literature. In particular, we will be considering PCA (Cunnington
t al. 2021 ), ICA (Wolz et al. 2014 ), GMCA (Carucci et al. 2020 ),
nd GNILC (Oli v ari et al. 2015 ). Although not quite obvious at first,
hese techniques are in fact very similar. In particular, all techniques
ested in this paper will model the foregrounds (or signal plus noise
n the case of GNILC) as a mixture of template maps. 

.1 For egr ound r emo v al using templates 

ll techniques considered in this paper begin by assuming that the
aps produced by an IM experiment are given by 

 = f + h + n . (1) 

n this formula, X is a n ch × n p matrix, where n ch is the number
f frequency channels and n p is the number of pixels in each map.
oreo v er, f represents the foregrounds, h represents the H I signal

nd n represents the noise. In this paper, we will use bold roman
ans serif font for matrices . F or v ectors, we will use bold italic
ont, or bold roman when upper case greek letters are used.We will
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lso define 

 = h + n . (2) 

It is then assumed that the foregrounds can be expressed as a
ixture of templates: 

 = A S . (3) 

n this formula, S is a n t × n p matrix of templates, where n t is the
umber of templates and A is a n ch × n t ‘mixing matrix’ which
ncodes how the templates are combined at each frequency channel. 
he foreground removal process then becomes a matter of fitting AS 

o X , subject to some sort of regularization. 
In PCA, one seeks to find templates that capture as much variation

n the data as possible. In particular, these templates are really just
he dot product of the data with the eigenvectors corresponding to the
argest n t eigenvalues of the covariance matrix. In this context, the 
ovariance matrix is usually generated assuming that the brightness 
f the sky along each line of sight were independently drawn from
ome distribution. This assumption is not true, but is close enough to
eality that PCA can still provide reasonable results. In the context 
f 21 cm IM, one usually estimates the covariance from the data as 

ˆ 
 = 

1 

n p 
( X − X )( X − X ) T , (4) 

here row i of X is the average of row i of X . In this paper, we will
se hats to denote covariance estimates. On the other hand, we will
se matrices without hats to denote true covariances. In this case, ˆ C 

s a n ch × n ch matrix. In ICA, one seeks templates that are statistically
ndependent. In GMCA, one assumes that the templates S ought to be
parse in some wavelet domain. ILC methods such as GNILC seek 
o find a filter that has a unit response to h + n , while minimizing
he variance of the residuals (Oli v ari et al. 2015 ). Readers can refer
o Marins et al. ( 2022 ) for a more rigorous description of how these
tandard techniques are regularized. 

Both Shaw’s work and the NKL technique described in this paper 
ake use of the KL transform (Tegmark, Taylor & Heavens 1997 )

or foreground cleaning. The KL transform uses the covariance 
atrices of both the foregrounds and signal to clean the data. These

ovariances either come from priors or are estimated from the data 
tself. For NKL, we estimate the foreground covariance from the data 
nd get the H I and noise covariances from priors. Let C FG be the
ore ground co variance and C S be the signal co variance. F or now,
et us consider only frequency correlations, resulting in matrices of 
ize n ch × n ch . In practice, the covariances used in NKL will have
arger dimension since they will include angular correlations as well. 
o we ver, this discussion will be clearer if we consider only the n ch ×
 ch case, and a mixing matrix plus template model can still be used
o describe the case involving angular correlations. 

The signal model C S includes the statistics of whatever compo- 
ents the analyst would like to reco v er from beneath the foregrounds.
n this paper, we will take C S = C H I unless otherwise noted. It should
e noted that the freedom to choose C S = C H I will provide NKL
ith an advantage o v er the other techniques mentioned in this paper.
hese techniques make no distinction between the H I and noise. The
L technique works by solving the generalized eigenvalue problem 

 FG � = C S ��. (5) 

n this formula, � is a matrix of eigenvectors and � is a diagonal
atrix of eigenvalues. It turns out that the eigenvectors � obtained 

re a solution to the optimization problem (Ghojogh, Karray & 
rowley 2023 ): 

max 
� 

tr ( � 

T C FG � ) 

subject to � 

T C S � = I . 
(6) 

o, the KL transform finds modes that have as high a ratio of
oreground to signal as possible. In particular , the eigen values λi 

ndicate the expected ratio of foreground to signal power at that
articular mode. One then cleans the data by removing modes that
re foreground dominated. In the language of templates and mixing 
atrices, we find that the template matrix is 

S = P s ( X − X ) . (7) 

n this formula, P s is a n t × n ch matrix whose rows are the foreground-
ominated eigenv ectors. Moreo v er, let the symbol P to represent a
 ch × n ch matrix whose rows are the eigenvectors generated by the
eneralized eigenvalue problem. The mixing matrix is then 

 = P 

−1 
s , (8) 

here P 

−1 
s is a n ch × n t matrix containing only columns of P 

−1 that
orrespond to foreground-dominated modes. 

.2 Discussion of techniques 

efore actually testing any techniques, it will be beneficial to discuss
ifferences between the techniques considered in this paper. In 
articular, we will discuss these differences and try to provide 
ome moti v ation for why certain techniques may provide better
erformance than others. 
First, one should note that GNILC requires a model for the H I

nd noise, making it a ‘non-blind’ technique. This is different from
MCA, PCA, and ICA, where the only free parameter provided by

he user is the number of templates to use. 
Another aspect of these techniques to consider is locality. In the

tandard version of GMCA, the matrices A and S are meant to
apture the foregrounds at all pixels and angular scales (Carucci et
l. 2020 ). PCA and ICA are typically conducted in a similar way,
here one estimates the covariance C using the entire data set. On the
ther hand, GNILC cleans the maps in a more fine-grained way. In
articular, it divides the data into needlet coefficients, and then cleans
he data one coefficient at a time. This allows for the foregrounds to
e cleaned differently depending on the location and angular scale 
n question. 

One can imagine reasons why such a fine-grained treatment might 
ro vide advantages. F or instance, the ratio of fore ground to H I

ower is expected to vary with angular scale. In particular, large
ngular scales will suffer worse contamination than smaller ones. 
hen working with unpolarized foregrounds, one would expect 

imilar chromaticity at all lines of sight. Ho we ver, when dealing
ith polarized foregrounds, we expect for the chromaticity to vary 
ith line of sight. As such, one would expect for pixels close to the
alactic plane to require more templates to clean than ones far from

he plane. Thus, it seems likely that a more fine-grained approach
 ould w ork better when dealing with polarized foregrounds. 
It is certainly possible to imagine changing PCA, ICA or GMCA

o make them more local. For instance, one could implement a scale-
nd location-dependent version of PCA where the covariance matrix 
s estimated for some neighbourhood around each needlet coefficient. 
n addition, a technique called L-GMCA has been proposed Bobin 
 2017 ) in which one uses different mixing matrices for different
egions of the map. For now though, we will consider only the global
ersions of these techniques. 
MNRAS 527, 8382–8401 (2024) 
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Figure 1. An example of dividing a needlet map into chunks. 
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So, we see reasons why a more localized approach w ould lik ely
rovide better results when cleaning foregrounds from maps. So
ar, GNILC is the most local approach that has been found in the
iterature. In Oli v ari et al. ( 2015 ), this approach was tested on low- z
imulated maps without any polarization leakage included (Oli v ari
t al. 2015 ). This study found GNILC outperforming PCA at angular
cales ( � > 30). Ho we v er, GNILC pro vided worse performance than
CA at scales larger than that. Interestingly, Carucci et al. ( 2020 )
ound that GMCA also struggled at large angular scales � < 50, at
east in the case when polarized foregrounds were included. 

In the next section, we introduce NKL. Similarly to GNILC, NKL
s a non-blind technique which acts on needlet coef ficients. Ho we ver,
hile GNILC only considers statistics along the line of sight, NKL

lso considers angular correlations in needlet space. 

 IMP LEM ENTING  N K L  

n this section, we introduce the NKL technique for removing fore-
rounds from 21 cm maps. We will begin this section by providing
ackground knowledge required for understanding how NKL works.
n particular, the first subsection introduces needlets. In the second,
e describe the way in which needlet coefficients are partitioned
efore cleaning is performed. Then, we describe the ways in which
e can generate an approximation of the foregrounds from the data.

n the final subsection, we provide a list of steps for performing NKL.

.1 The needlet transform 

he NKL process begins by performing a needlet transform on each
requency slice of the 3D maps. needlets are w avelet-lik e functions
hat have a finite width in both � and pixel spaces. These functions
ere first presented in Narco wich, Petrushe v & Ward ( 2006 ). For
ur purposes, we computed these coefficients using the PYS2LET

oftware package, details of which can be found in Leistedt et al.
 2013 ). Needlets are defined via 

 jk ( ̂  n ) = 

√ 

λjk 

∑ 

l 

b 

(
l 

B 

j 

) l ∑ 

m =−l 

Y lm 

( ̂  n ) Y lm 

( ξjk ) . (9) 

n this formula, b 
(

l 

B j 

)
is a bandpass function that is non-zero for

 

j − 1 ≤ l ≤ B 

j + 1 . In this paper, we choose B = 2 and use 4 ≤ j ≤
. The very lowest � modes are described using a ‘scaling function’
Leistedt et al. 2013 ). The variable ξ jk refers to the line of sight at
hich the needlet is centred. In this paper, ξ jk refers to the location
f pixel k in a HEALPIX map with nside = 2 j + 1 . The variable λjk then
efers to the solid angle of the HEALPIX pixel in question. Needlet
oefficients can then be obtained simply by computing the following
ntegral 

jk = 

∫ 

T ( ̂  n ) ψ jk ( ̂  n )d 
. (10) 

n this formula, T ( ̂  n ) is the function for which the needlet coefficients
re being computed. In this work, T ( ̂  n ) will be the sky temperature.
ne can then reconstruct their temperature map using these coeffi-

ients as follows 

 ( ̂  n ) = 

∑ 

jk 

χjk ψ jk ( ̂  n ) . (11) 

arinucci et al. ( 2007 ) provide more detail on needlets and their use
n cosmology. 
NRAS 527, 8382–8401 (2024) 
.2 Partitioning of the needlet coefficients 

n important part of NKL is the partitioning of the needlet coeffi-
ients. We refer to the groups of partitioned coefficients as ‘chunks’.
n Fig. 1 , we present an example of a chunked map. For now, let
s suppose we are partitioning the coefficients for needlet scale j .
et us package the needlet coefficients at this scale of interest in a
atrix χ ( j ) . This matrix will have dimensions n ch × n ( j ) 

co , where n ch 

s the number of frequency channels and n ( j ) 
co is the number of needlet

oefficients per frequency channel at scale j . 
Next, let χ ( j ) 

i be the row of χ ( j ) corresponding to frequency
hannel i . The process of partitioning the row into N chunks begins
y selecting the coefficients located at columns q = a ∗ n ( j ) 

co /N for
 = 1, 2,. . . , N . Note here that q is indexing pixels in the HEALPIX

ap. Let us refer to these coefficients as ‘anchors’. Next, we assign
ll the other coefficients in the row to chunks according to which
nchor point they have the smallest angular separation from. Adjacent
eighbourhoods then swap coefficients until all contain the same
umber of coefficients. 
We then use the same chunk assignments for all rows in χ ( j ) .

his results in a new ‘chunked’ matrix χ ( j ) which has dimensions
 ch N × n ( j ) 

co /N . One row of χ ( j ) will contain the coefficients of
ne chunk at one frequency channel. Column q will contain the q th
lement from each chunk at all frequency channels. 

.3 Producing a foreground approximation 

n order to perform a KL transform, we need estimates for C FG and
 H I . The estimate of C H I is provided as a prior chosen by the analyst.
or the purposes of this paper, we estimate C H I from maps simulated
y CORA (Shaw et al. 2015 ). One may also want to estimate C N to
nclude in the KL transformation or for later debiasing. In this paper,
e estimate C N from the model used to simulate the noise. In a

eal experiment, this noise covariance could be determined from
he data. On the other hand, we seek to estimate C FG from the
ata itself. This approach is moti v ated by two facts. First, as of
ow, polarized Galactic synchrotron radiation is not well enough
easured or modelled to use an a priori covariance. In addition, a
ethod that estimates the foregrounds directly from data will be
ore robust against errors in calibration and systematics that may

ause the data to deviate from what would otherwise be an accurate
 priori model. It should be noted that relatively small errors in
he model of C FG can cause significant problems, due to the large
ynamic range between the foregrounds and H I . In this paper, two
ossible approaches to foreground estimation are presented, PCA
nd Discrete Prolate Spheroidal Sequences (DPSS) Approximate
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azY filtEriNg of foregroUnds (D AYENU, Ewall-W ice et al. 2020 ).
n the DAYENU approach, one assumes that the foregrounds are 
onfined within some region of delay space. This assumption still 
olds in our CRIME generated foreground maps, at least for lines
f sight outside the Galactic plane. This assumption can be useful,
ince it means that the H I for larger delays will not be affected
y the filter. This is different from PCA, where some signal loss
utside the foreground-dominated region of delay space may occur. 
oreo v er, unlike PCA, the DAYENU method treats each pixel (or

eedlet coefficient) uniquely. In PCA, one is using the same templates 
o approximate the foregrounds for all pixels/coefficients. The main 
eakness of DAYENU, ho we ver, is that it does not work when all
elays are contaminated by foregrounds. 

.3.1 Estimating foregrounds using PCA 

his process begins by estimating the frequenc y–frequenc y co vari- 
nce of the needlet coefficient maps. For this paper, we performed 
CA foreground estimates one needlet scale at a time and without any 
hunking. PCA was not performed on chunked maps, as our scheme 
or selecting the number of components to remo v e struggled in this
ase. It is possible that applying PCA to each chunk individually 
ould provide a better approximation, but we leave this to future 

esting. Once again, we are making the assumption that each line of
ight is drawn independently and identically from some distribution. 
ince the needlet coefficients at a particular frequency channel have 
 mean, we can estimate their covariance as 

ˆ 
 

( j ) = 

1 

n 
( j ) 
co 

χ ( j ) 
(
χ ( j ) 

)T 
. (12) 

he only exception to this is for the ‘scaling function’ of the needlet
ransform, which contains the � = 0 spherical harmonic mode. For
he scaling function, one can just use equation ( 4 ). Due to their
impler frequency dependence, we will assume that the foregrounds 
re restricted to a subset of these modes. On the other hand, we will
ssume that the H I signal and noise ( s ( j ) ) will be more evenly spread
ut throughout all the modes. This naturally divides the eigenmodes 
nto n fg modes which are dominated by the foregrounds and n ch −
 fg modes which are dominated by the signal plus noise. Let P be
 matrix whose rows are eigenvectors of ˆ C 

( j ) . Moreover, let P f be
n n fg × n ch matrix containing the rows of P corresponding to the
argest n fg modes of ˆ C 

( j ) . Next, let ( P 

−1 ) f be an n ch × n fg matrix
hose columns are the columns of P 

−1 which act on the foreground-
ominated rows of P . A foreground estimate can then be obtained
ia 

ˆ 
 

( j ) = 

(
P 

−1 
)

f 
P f χ

( j ) . (13) 

he value for n fg can be estimated in different ways. In Zhang
t al. ( 2016 ), a likelihood ratio test was used. In such a method,
ne essentially increases the number of parameters used until the 
esulting power spectrum begins to converge (Zhang et al. 2016 ). 
lternatively, one can use their models of the H I and noise, along
ith the Akaike Information Criterion (AIC), to estimate n fg . This
as the approach taken in Oli v ari et al. ( 2015 ). The AIC is given by 

IC = 2 k − 2 ln ( L ) , (14) 

here k is the number of parameters in the model and L is the
aximum-likelihood value of the model. The likelihood function 

sed in this paper can be found in the appendix of Oli v ari et al.
 2015 ). Thus, by minimizing the AIC, one rewards goodness of fit
via the second term) while also discouraging o v erfitting (via the first
erm). More information on the use of AIC in a context such as this
an be found in Oli v ari et al. ( 2015 ). In this paper, the number of
odes chosen in any given situation will al w ays be selected using
IC unless otherwise noted. 

.3.2 Estimating foregrounds using DAYENU 

nother possible approach to estimating the foregrounds is to use the
AYENU model from Ewall-Wice et al. ( 2020 ). DAYENU models

he fore ground co variance as simply as possible, using the fact that
he foregrounds should be highly concentrated at delays close to τ =
. In particular , D AYENU will model the foreground covariance in
elay space as 

˜ 
 

� 

FG ( τ, τ
′ ) = ε−1 1 

2 τw 

δ( τ − τ ′ ) | τ | < τw . (15) 

n this equation, 2 τw is the assumed full width of the foregrounds in
elay space and ε−1 is their assumed magnitude. 
At a high level, our DAYENU-based scheme approximates the 

oregrounds at some line of sight in needlet space using the following
teps: 

(i) Estimate the width of the foregrounds in delay space for the
eedlet coefficient of interest by comparing the delay transform to 
riors. The full width will correspond to 2 τw . 
(ii) Use this width to generate the foreground covariance model 
 

� 

FG ( ν, ν ′ ). We would like to emphasize here that this foreground
ovariance is estimated one line of sight at a time. It is also not the
ame as the fore ground co variance that will be eventually used in the
L step of NKL. 
(iii) Project the needlet coefficient onto the image of C 

� 

FG ( ν, ν ′ ).
his acts as a bandpass filter in delay space, selecting the foreground-
ominated region. 
(iv) Perform steps 1–3 at all coefficients in the needlet map. This

ill provide a foreground approximation ˆ f 
( j ) 
k from which one can 

stimate ˆ C 

( j ) 
FG . 

This list has given a high lev el e xplanation of the DAYENU-based
cheme. Let us now consider the details. 

First, recall the DAYENU covariance definition provided in 
quation ( 15 ). In this formula, will use the value of τw acquired
n the previous steps and will set ε = 1 for now. We will account for
he magnitude of the foregrounds later on in this work. 

In frequency space, the DAYENU foreground covariance will be 
iven by 

 

� 

FG ( ν, ν ′ ) = sinc (2 πτw ( ν − ν ′ )) . (16) 

hen frequency samples are evenly spaced, C 

� 

FG ( ν, ν ′ ) will be
iagonalized by DPSS (Slepian 1978 ). Suppose one is dealing with
equences of length N d . The DPSS sequences { u α( N d , W ) | α = 1, 2,
, . . . , N } will form an orthonormal basis that maximizes energy
n a region [ − W , W ] of the Discrete Fourier Transform (DFT)
omain. We call this ‘spectral concentration’ and denote it as s c .
ore precisely, the spectral concentration for some sequence is 

 c = 

∫ W 

−W 

| U ( x) | 2 d x ∫ 1 / 2 
−1 / 2 | U ( x) | 2 d x 

. (17) 

n this formula, x is the variable of the DFT domain, which in our
ontext is delay. The variable U represents the DFT of u , centred at
 N d − 1)/2. u 1 is defined as a unit norm sequence that maximizes s c .
hen, u 2 is created by finding a unit norm sequence that maximizes
 c while being orthogonal to u 1 . In general, u n is created by finding
MNRAS 527, 8382–8401 (2024) 
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 unit norm sequence that maximizes s c while being orthogonal to u i 

or i = 1,. . . , n − 1. 
In the case of DAYENU, the DPSS sequences will maximize

nergy at delays −τw < τ < τw . 
The DAYENU model can then be used to estimate the foregrounds

or each needlet coefficient in the following way. For the following
teps, let ξ ( j ) 

k be a n ch × 1 vector containing needlet coefficients for
ll channels at scale j and pixel k . The procedure to estimate the
oregrounds at χ ( j ) 

k is as follows. 

(i) Use priors on the H I and noise to generate mock needlet
oefficient maps. These mock maps will be denoted by h 

m , ( j ) and
 

m , ( j ) for the H I and noise, respectiv ely. Moreo v er, let y m , ( j ) = h 

m , ( j ) 

 n 

m , ( j ) . 
(ii) Randomly select N p lines of sight from these mock coefficient
aps. Then, apply two Blackman–Harris windows and a Fast Fourier
ransform (FFT) to bring them into the delay domain. Moreo v er, the
ata should be shifted to place τ = 0 at the centre sample. We will
enote such a transform with a tilde, that is, 

˜  = SHIFT 

[
FFT 

[
aW 

2 
]]

, (18) 

here W denotes a four term Blackman–Harris window of appropri-
te length. Let D be a set containing the randomly chosen pixels. 

(iii) For each i ∈ D, perform a curve fit on abs ( ̃ y m, ( j ) 
i ). This curve

t is meant to give one an estimate of the typical level of abs ( ̃ y ( j ) 
i ) at

ach delay. It was found that using a third-order polynomial in log-
pace w ork ed quite well. The curve produced by this fitting process
t pixel i will be denoted r m, ( j ) 

i . 
(iv) Average the fits obtained at each pixel to produce a typical H I

lus noise curve in delay space: 

 

( j ) = 

1 

N p 

∑ 

i∈ D 

r 
m, ( j ) 
i . (19) 

n this formula, N p is the number of pixels chosen and D is the set
f pixels used in the approximation. 
(v) Perform a delay transform on the needlet coefficient of interest,

iving ˜ χ
( j ) 
k . Next, compare abs ( ̃  χ

( j ) 
k ) with r ( j ) . The delay at which the

evel of abs ( ̃  χ
( j ) 
k ) becomes comparable to that r ( j ) will correspond

o the τw used in DAYENU. For this paper, we select the delay at
hich abs ( ̃  χ

( j ) 
k ) is within a factor of 2 of r j . 

(vi) Use the τw obtained in the previous step to generate a
AYENU covariance as in equation ( 16 ). This DAYENU matrix
ill be denoted via C 

� . 
(vii) Compute the SVD of C 

� , giving C 

� = USV 

† . This SVD will
e used to project onto the image of C 

� . Let U be a matrix containing
olumns of U for which the singular value is abo v e some threshold.
his threshold is determined based on the expected magnitude of

he foregrounds. Since the foregrounds can be 5 orders of magnitude
righter than the signal, it is advisable to choose the cut-off to be at
r below 10 −10 s max , where s max is the largest singular value of C 

� . In
his particular work, we use the same threshold for all angular scales
nd all needlet locations. The foregrounds are then approximated via 

ˆ 
 

( j ) 
k = U U 

T 
χ

( j ) 
k . (20) 

.4 The NKL algorithm 

n the literature, one finds standard foreground removal methods
uch as PCA, ICA, and GMCA being used in a way where one pair
f A and S is generated for the entire data set. One exception to
his in the literature is GNILC, which performs the cleaning in a

ore fine-grained way, sending the data to the needlet domain and
NRAS 527, 8382–8401 (2024) 
hen cleaning each needlet coefficient individually. However, this
ethod only takes advantage of frequenc y–frequenc y correlations

n the data. Similarly to GNILC, NKL performs its cleaning in
he needlet domain. The key dif ference, ho we ver, is that NKL also
akes advantage of angular correlations in the needlet coefficients.

oreo v er, instead of using an ILC step, as in GNILC, NKL uses a
L transform. Below are step by step instructions for performing an
KL cleaning on some dataset. 

(i) Generate an approximation of the foregrounds at the needlet
cale of interest. In this paper, foreground approximations are
enerated using either DAYENU of PCA. This approximation will
e denoted via ̂  f ( j ) . 
(ii) Divide the needlet coefficients at the scale of interest into N

chunks’ of equal size. These chunks must be adequately large to
ro vide accurate co variance estimates. The appropriate chunk size
ill depend both on the severity of the foregrounds and on the needlet

cale in question. This gives χ ( j ) , which was defined in Section 3.2 , 
(iii) Divide the foreground approximation into chunks, providing

ˆ 
 

( j ) . Use ̂  f ( j ) to generate an estimate of the foreground covariance at
he scale of interest. This covariance can be estimated in the manner
hown in equation ( 4 ). This covariance will be denoted ˆ C 

( j ) 
FG and will

e a square matrix of size n ch N . 
(iv) Use priors on the signal to create an estimate of C 

( j ) 
S . This

atrix will have the same shape as the foreground covariance matrix
escribed in the previous step. 
(v) Use the covariance matrices acquired in the previous two steps

o perform a KL transform on the needlet scale of interest. The steps
or this process are described in Section 2.1 . 

.5 Deviations from the ideal case 

he NKL technique is based on the KL transform, which is described
n equation ( 5 ). There are two deviations from this ideal case that we
ill consider here. The first is inaccuracies in our estimates of C S 

nd C FG . The signal covariance, C S , is derived from priors and thus
ay be sensitive to the model chosen. We tested this in one case by

sing priors generated by CORA on maps generated using CRIME . We
o not present the results in this paper, but we found that there was
 negligible difference in performance. 

On the other hand, C FG is estimated from the data. This foreground
pproximation will inevitably be contaminated by some signal and
oise. More precisely, for scale j , we have 

ˆ 
 

( j ) = f ( j ) + h ′ ( j ) + n ′ ( j ) . (21) 

n this formula, h ′ ( j ) and n ′ ( j ) represent the H I and noise present in
he fore ground approximation, respectiv ely. We include underlines
n these variables to emphasize that these maps have been partitioned
s described in Section 3.2 . In this section, we will consider the effect
hat h ′ ( j ) and n ′ ( j ) have on the statistics of the cleaned coefficients. 

Let us begin by considering the generalized eigenvalue problem
f equation ( 5 ). For now, let us assume perfect knowledge of the
oregrounds, noise, and signal. Moreover, let us consider only one
igenmode, φi , which has a corresponding eigenvalue, λi . Lastly, let
s consider an analysis conducted only at one needlet scale, j . We
ill drop any j subscripts since the analysis is all done at the same

cale. This becomes the generalized eigenvalue problem 

 FG φi = λi C S φi . (22) 

o we ver, when performing NKL, we will use ˆ C FG . We use the hat
ymbol to denote covariance estimates derived from the data. This
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ives a new eigenvalue problem 

ˆ 
 FG φ

′ 
i = λ′ 

i C S φ
′ 
i , (23) 

here apostrophes represent perturbed versions of the variables seen 
n equation ( 22 ). This estimate of the foreground covariance will
ary from the true version as 

ˆ 
 FG = C FG + � FG + C h ′ h ′ + C f h ′ + C n ′ h ′ + C n ′ n ′ + C f n ′ . (24) 

n this formula, � FG represents foreground errors that would be 
resent if ˆ C FG were acquired from the true foregrounds. The C f h ′ 

erm is given by 

 = 

1 

N p 

∑ 

q 

(
h 

′ 
q f 

T 
q + f q h 

′ T 
q 

)
. (25) 

n this formula, f q is the q th column of f − f and h 

′ 
q is defined as

 

′ − h 

′ 
. Note that the o v erline here has the same meaning as in

quation ( 4 ). The variable N p = n ( j ) 
co /N is the number of columns in

 

′ and s ′ . This is the same as the number of needlet coefficients per
hunk per frequency channel. Note that the other terms in equation 
 24 ), for example, C n ′ h ′ , are defined in a similar way. 

Each of these terms ought to be a source of error in our resulting
stimate of the H I signal. Ho we ver, the most concerning of these is
 f h ′ , which will lead to a ne gativ e bias in our estimate of the H I

ignal. In principle, C n ′ h ′ should also lead to correlations between 
he noise and H I after cleaning has been done. Ho we ver, we did not
bserve this leading to any noticeable bias in the resulting power 
pectra. Thus, we will focus on the contribution of C f h ′ . 

Let F 

′ 
i = φ′ T 

i f p and H 

′ 
i = φ′ T 

i h p . We will find that C f h ′ will lead
o a non-zero correlation between H 

′ 
i and F 

′ 
i . It turns out that this

ias will be more severe for modes with larger eigenvalues λi . This
omes into the picture through the variable 

ik = E[ H 

′ 
i H 

′ 
k ] ≈

{
0 λi < 1 
δik λi > 1 , 

(26) 

here E [] refers to an expectation value. It will be the case that 

[ F 

′ 
i H 

′ 
k ] ≈ δik 

1 

N p 

� j �= i 

λj αii + αjj λi 

λi − λj 

. (27) 

n this equation, δik is a Kronecker delta. A deri v ation of equation
 27 ) can be found in Appendix A. We emphasize that this is a rough
stimate, but it does provide some insight into the statistics of NKL.
here are four important features about equation ( 27 ) that we would

ike to emphasize. 

(i) Signal-dominated modes ( λi < 1) will be ne gativ ely biased, as
hey only pick up contributions from terms where λj > λi . 

(ii) The λi − λj in the denominator ensures that the bias will be 
mall for modes λi < < 1. Ho we ver, the bias will be worse for modes
ith λi closer to 1. 
(iii) This bias scales like 1 

N p 
, meaning that it will become less

evere when larger chunks are used in the analysis. 
(iv) The bias includes no dependence on the number of frequency 

hannels used in the analysis. This is different from ILC methods in
hich the bias becomes more severe as more frequency channels are 

ncluded. 

A test of this equation will be presented in Section 5.4 . 

.6 MGNILC, a corollary 

ne can also use the foregrounds approximation methods of Sec- 
ion 3.3 to modify the GNILC technique described in Oli v ari et al.
 2015 ). In GNILC, one generates an estimate for the H I signal plus
oise by applying a filter to the data: 

ˆ  = 

ˆ S ( ̂ S 

T ˆ R 

−1 ˆ S ) −1 ˆ S 

T ˆ R 

−1 
x. (28) 

n this formula, x is the data vector (all frequency channels for a
articular needlet coefficient), ˆ s is an estimate of the H I plus noise
or a particular line of sight, ˆ R is an estimate of the covariance of the
ata, and ˆ S is given by 

ˆ 
 = 

ˆ R 

1 
2 
H I + N U s . (29) 

ere, we have that ˆ R HI + N is a prior of signal plus noise covariance,
nd U s is a matrix containing the subset of eigenvectors of ˆ R that are
ominated by the signal plus noise. In this formula, raising a matrix
o the 1/2 power refers to taking the Hermitian square root. When
sing an ILC technique such as GNILC, one must consider errors in

ˆ 
 . In particular, ˆ R will have some error due to the finite sample size
sed in the estimation: 

ˆ 
 = R + �. (30) 

n this formula, R is the true covariance of the data and � is an error
erm given by 

 = ( ̂  R H I + N − R H I + N ) + ( ̂  R FG − R FG ) + 

˜ C . (31) 

n this formula, the first two terms correspond to errors in the
oregrounds and H I + n , respectively. The third term corresponds
o a spurious correlation that appears between the foregrounds and 
ignal plus noise due to the finite sample size used. This is given by
he equation 

˜ 
 = 

1 

N p 

∑ 

q 

(
s q f 

T 
q + f q s 

T 
q 

)
. (32) 

n this formula, N p is the number of needlet coefficients in the
eighbourhood being considered and q is a variable that indices lines
f sight in the needlet coefficient neighbourhood. We also introduce 
he variable s q = h q + n q . 

Similarly to what was seen in NKL, ˆ C causes residual foregrounds 
o have a negative correlation with the H I plus noise. This leads to
he ne gativ e ‘ILC bias’ described in Delabrouille et al. ( 2009 ). This
ias scales like n ch 

N p 
. Such a bias is troublesome at larger scales, for

hich N p is restricted by the number of needlet coefficients available. 
To mitigate this problem, we propose MGNILC. In this approach, 

e use a modified covariance estimate 

ˆ 
 m 

= 

ˆ R FG + 

ˆ R H I + N . (33) 

n this formula, ˆ R FG is an estimate of the foreground covariance in
he needlet neighbourhood of interest using the approach described 
n Section 3.3 . In this case, our error term will look like 

ˆ 
 m 

= 

1 

N p 

(
s ′ q f 

T 
q + f q s 

′ T 
q 

)
. (34) 

n this formula, s ′ q is the H I left o v er after performing the foreground
pproximation. Whether using PCA or DAYENU for the foreground 
pproximation, we should find that s ′ q is essentially a version of s q 
hat has been low-pass filtered in delay space. This reduces the ILC
ias in tw o w ays. For one, the f act that the H I plus noise has been
o w-pass filtered pre v ents the ne gativ e bias from affecting larger
elays. Moreo v er, it also prev ents an y spurious correlations between
igh delay components of s with the low delay components of f ,
roviding some additional mitigation of the ILC bias. Ho we ver, the
LC bias problem will not be fixed completely as there will of course
till be correlations between f q and the low delay content of s q . 
MNRAS 527, 8382–8401 (2024) 
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Table 1. Parameters describing the hypothetical telescope used in this paper. 

Parameter Value 

D 13.5 m 

T inst 20 K 

f sky 1 
t obs 40 000 h 
N dishes 64 
n ch 256 
[ νmin , νmax ] [980 , 1080 MHz ] and [400 , 500 MHz ]. 
�ν 0 . 390625 MHz 
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 SIMULATED  MAPS  F O R  TESTING  

his section provides a description of the simulated maps used for
esting the various fore ground remo val techniques described earlier
n this paper. 

.1 Cosmological signal 

e generated simulated H I maps using the CORA package. 1 The
ORA software assumes that the 21 cm signal is Gaussian and

sotropic. F or computational conv enience, the co variance is estimated
sing the flat sky approximation. One then simulates the 21 cm
uctuations using equation C5 from Shaw et al. ( 2015 ). The mean H I

emperature is then supplied using equation C4 from that same paper.
he CORA software uses cosmological parameters from Planck 2018

Planck Collaboration 2020 ). Moreo v er, we used the default CORA

etting, which is to estimate 
H I using the model given in Crighton
t al. ( 2015 ). The CORA software package also incorporates redshift-
pace distortions, assuming a constant H I bias of b ( z) = 1 by default.

.2 For egr ounds 

n this paper, we consider only foregrounds from Galactic syn-
hrotron radiation. For the synchrotron radiation, both unpolarized
nd polarized contributions are included. For the polarized fore-
rounds, 1 per cent leakage of both the Q and U components was
ssumed. This value was chosen to be consistent with a typical level
f polarization leakage for H I IM telescopes. These foregrounds are
imulated using the CRIME software package (Alonso et al. 2014 ).
RIME models unpolarized Galactic synchrotron emission via 

 ( ̂  n , ν) = T Haslam 

( ̂  n ) 

(
ν

νH 

)β( ̂ n ) 

+ δT . (35) 

n this formula, T Haslam 

is the Haslam map temperature, β is a spectral
ndex generated from the Planck sky model (Delabrouille et al. 2013 ),
nd νH is 408 MHz, the frequency of the Haslam map. The δT term
ccounts for angular scales l � 200, which are smaller than the
aslam map’s resolution. This term is generated assuming that the

oregrounds are Gaussian and isotropic at these scales. The power
pectrum assumed can be found in Alonso et al. ( 2014 ). 

The polarized synchrotron emission is modelled using the mea-
ured Faraday depth through the entire Milky Way presented in
ppermann et al. ( 2012 ). CRIME then assumes, among other things,

hat the number of emitting regions follows a Gaussian distribution
s a function of Faraday depth. 

CORA also can be used to model the polarized synchrotron
adiation. The model used by CORA is essentially the same as that
sed by CRIME . The main theoretical difference is that CORA assumes
hat emitting regions at the same Faraday depth for a particular line of
ight are independent. This leads to a slightly different dependence
n the emission at Faraday depth ψ for a particular line of sight.
he Faraday depth coherence lengths are also slightly different,
eing 0 . 5 rad m 

−2 for CRIME and 1 rad m 

−2 for CORA . The value for
RIME was chosen to provide results consistent with the Hammurabi
imulation package (Jaffe et al. 2012 ), while CORA ’s value was
hosen to be consistent with observations at 1.4 GHz (Wolleben et al.
006 ). In practice, we found that the foregrounds provided by CRIME

ppeared to be more chromatic than those from CORA . Thus, to be
onserv ati ve, we used CRIME to simulate the foregrounds. 
NRAS 527, 8382–8401 (2024) 
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.3 Instrumental effects and noise 

n this paper, tests of various fore ground remo val techniques are
erformed assuming an instrument similar to the MeerKAT array
perating in single-dish mode. The parameters of this telescope are
escribed in Table 1 . One may notice that the observing time of
0 000 h is quite large. This value is not particularly realistic, but was
hosen to ensure that the noise would not o v erpower the H I signal. In
uture telescopes such as the Packed Ultra-wideband Mapping Array
PUMA), adequate noise levels can be achieved with larger numbers
f antennas and less integration time. The value f sky = 1 was chosen
ince we are imagining an instrument that observes the whole sky.
ny masking is then applied after observations have taken place. 
This hypothetical instrument was chosen for realism and simplic-

ty. Since it consists of an array of dishes operating in single-dish
ode, we can model the beams by convolving with a Gaussian. This

s much easier than trying to derive maps from simulated visibilities.
oreo v er, the relativ ely low angular resolution of the instrument

 ≈1 ◦) ensures that large values of � will not be required. This
elaxes computational requirements when working with needlets.

e approximate beam effects in a way that is identical to Carucci
t al. ( 2020 ). In particular , we con volve the simulated maps with a
requency-dependent Gaussian beam. We then reconvolve all maps
o give them the same angular resolution. 

We added noise to the simulated maps in the same way as Carucci.
n particular, the noise per pixel follows a Gaussian distribution with
 standard deviation given by 

N ( ν) = T sys ( ν) 

√ 

4 πf sky 

�νt obs N dishes 
beam 

. (36) 

n this formula, T sys is the system temperature, f sky is the fraction
f the sky observed in the survey, �ν is the frequency resolution,
 obs is observing time, and 
beam 

is the beam solid angle. Similarly,
e estimate the system temperature in the same way as Carucci,

ssuming 

 sys ( ν) = T instr [K] + 66 

(
ν

300[ MHz ] 

)2 . 55 

. (37) 

Once noise and Gaussian beam effects are accounted for, the maps
sed in testing can be described schematically via the equation 

 = ( B low − B) ∗ ( B ∗ ( f + h ) + n ) . (38) 

n this schematic, B ∗ represents convolution with the beam and B low 

s the beam at lowest frequency channel in the band. 

 TESTS  O F  M E T H O D S  

n this section, we test the performance of various foreground removal
ethods and compare the results. In particular, we test GMCA,
CA, ICA, GNILC, and NKL. It should be noted that the severity of

https://github.com/radiocosmology/cora
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Figure 2. An illustration of the mask used for tests of the fore ground remo val 
methods in the high-redshift case. The mask has been applied to this map, 
which includes simulated foregrounds, signal and noise. 

Figure 3. The top plot shows delay spectra at the brightest pixel in the 
unmasked map in the higher redshift case. The bottom plot shows delay 
spectra at the brightest pixel remaining after the mask has been applied. 
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Table 2. A summary of the needlet coefficients in these tests. We use the 
same scales, l ranges, and n side values for both the low- and higher- z tests. 

Scale l range n side 

Scaling function [0,16] 16 
j = 4 [8,32] 32 
j = 5 [16,64] 64 
j = 6 [32,128] 128 
j = 7 [64,256] 256 
j = 8 [128,512] 512 
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olarized foregrounds is expected to vary as a function of redshift.
n particular, the chromaticity of polarized foregrounds will become 
ore severe at lower frequencies due to Faraday rotation. Therefore, 
e conduct tests in two different redshift regimes corresponding to 

ow- and high-frequency bands of MeerKAT. 

.1 Additional map preparation steps 

fter performing the steps described in Section 4.3 , we took some
dditional steps to aid the cleaning process. These were done both to
xclude highly contaminated pixels and to lower computation times. 

As expected, polarized foreground chromaticity is quite severe in 
he Galactic plane. We applied a mask to the data to exclude the
rightest 15 per cent of pixels. Such masks were created for both
he low- and high- z test cases. The mask created for the high- z test
ase is shown in Fig. 2 . The chromaticity problem is illustrated in
ig. 3 . The top plot in the figure shows delay spectra for the brightest

ine of sight in the high- z test case. Note here that the foregrounds
ominate for almost all delays. The bottom plot shows delay spectra 
t the brightest unmasked line of sight. In this case, we find that the
oregrounds occupy a relatively small region of delay space, allowing 
or more ef fecti ve cleaning. 

It was noted that the Gaussian half-power beamwidths in both the 
ow- and high- z test cases are greater than 1 ◦. As such, we truncated

aps in both test cases at � = 255 for computational simplicity.
oreo v er, we performed needlet transformations using B = 2 with

cales running from j = 4 up to 8. We provide details of how the data
re represented in the needlet domain in Table 2 . 
It is worth discussing here the impacts that B and the range of j
an have on one’s analysis. Increasing the value of B will decrease
he spread of the needlet coefficients in real space, while increasing
heir spread in harmonic space. So, choosing a value of B greater
han 2 would in principle allow for finer chunking of the maps but
ould also lead to coarser partitioning in � -space. 
Next, let us consider the range of j chosen. Since the maps were

runcated at � = 255, scales with j > 8 would contain no information
nd thus were not included. The minimum scale value j min = 4
as chosen to ensure that the scaling function would have enough

tatistics to be cleanable by NKL. 
The value of B and range of j chosen for this paper do work.

o we ver, other v alues were not tested, so it is unknown whether
hese are the optimal choices one could make. 

.2 Implementation of cleaning techniques 

hen cleaning with blind methods like PCA, ICA, and GMCA, 
e use priors on the H I signal and noise to select the appropriate
umber of components to be remo v ed. In particular, we generated
dditional sets of H I maps using CORA and noise maps using equation
 36 ). We then applied the beam convolution described in Section 4.3
nd produced covariance estimates from these processed maps using 
quation ( 12 ). In this paper, we chose to use N maps = 10 mock maps
or estimating the covariances. We then used our models of the H I

nd noise covariances to estimate the appropriate number of modes to
emo v e using the AIC prescription described in Oli v ari et al. ( 2015 ).

For the cases of GNILC, MGNILC, and NKL, we used the same
ets of mock H I and noise maps as abo v e to estimate the needlet
oef ficient cov ariances. 

For GNILC, we selected the appropriate number of coefficients 
sing the Oli v ari AIC prescription. We also chose to use windows
ith a size of at least 10 5 coefficients. This seemed to be the window

ize required to minimize the ILC bias described in Delabrouille et al.
 2009 ). There were of course exceptions to this rule for scales up to
 = 6, since needlet maps at lower j did not have enough coefficients.
hese windows were generated simply by choosing the closest N 

oefficients to the coefficient of interest. 

.3 Power spectrum estimation 

n order to estimate the power spectrum, we used the method
escribed in Liu, Zhang & Parsons ( 2016 ). In this approach, one
omputes Bessel-spherical harmonic modes of the sky 

 �m 

( k) = 

√ 

2 

π

∫ 

d 
d r r 2 j � ( kr ) Y 

∗
�m 

( ̂  n ) φ( r ) T ( r ) , (39) 
MNRAS 527, 8382–8401 (2024) 



8392 J. Podczerwinski and P. T. Timbie 

M

Figure 4. Angular power spectra estimated from unmasked maps using 
HEALPY at 450 MHz . Solid lines correspond to maps which have undergone 
beam convolution. Dashed lines correspond to maps that have not undergone 
any convolution steps. 
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Table 3. A summary of the NKL cleaning parameters used in the high- z test. 

Scale Number of chunks SNR 

Scaling function 3 1 
j = 4 12 4 
j = 5 32 4 
j = 6 64 4 
j = 7 96 4 
j = 8 96 4 
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here φ( r ) is a window function representing the surv e y volume.
ne then computes a ‘spherical harmonic power spectrum’ 

 � ( k) = 2 π2 

[∫ 

d 3 rφ( r ) 2 j � ( kr) 2 
]−1 

� m 

| T �m 

( k) | 2 
2 � + 1 

. (40) 

his spherical harmonic power spectrum is a spherical analogue to
he commonly seen cylindrical power spectrum. It is also a useful
ool in that it allows for different � modes to be checked individually.
hen, in the case of a translation-invariant sky, one can form the
ower spectrum estimator 

ˆ 
 ( k) = � � w � S � ( k) . (41) 

n this formula, the w � are weights which depend on the surv e y
olume used. These weights account for the fact that sensitivity to
 certain k mode may vary with angular scale � . In this case of
 translation-invariant sky, 〈 ˆ P ( k) 〉 = P ( k). It should be mentioned
hat the maps presented in this paper do not strictly satisfy translation
nvariance. F ore grounds vary significantly with line of sight and the
 I is subject to redshift-space distortions and cosmic evolution. Even

he noise breaks translation invariance, as its amplitude varies with
requency. Despite this, we still present ˆ P ( k) as a ‘power spectrum’,
ince it is provides us with a weighted average of fluctuations at
ength-scale k , even when translation invariance is broken. 

.4 Test at higher redshifts 

or this test, we used the hypothetical instrument described in Table 1
nd assumed it to have 256 evenly spaced frequency channels running
rom 400 to 500 MHz. 

In Fig. 4 , we provide angular power spectra for the 450 MHz
requency channel used in this test. The maps used to produce these
ower spectra have not been masked. We chose to use unmasked
aps here in order to a v oid edge effects at the mask boundaries.

n this case, the beam convolution causes significant loss of signal
bo v e � ≈ 50. Due to this, any power spectra produced by our
nstrument will be missing significant amounts of small length-scale
nformation. For this reason, we will e v aluate the ef fecti veness of
he cleaning techniques based on how well they recover the power
pectra of convolved maps. It should also be noted that the noise
uffers less loss at � > 50 than the other components. This is due to
he fact that the foreground and H I have been convolved with a beam
wice while the noise has only been convolved once. This causes the
NRAS 527, 8382–8401 (2024) 
oise to be the dominant component of the maps at those smaller
ngular scales. 

For the case of NKL, the chunk size, and desired signal-to-noise
atio (SNR) of the KL cleaning vary with needlet scale. We
ummarize this in Table 3 . The v alues sho wn in this table were
hosen through trial and error. Ideally, one would like to clean
ith as many chunks as possible, since this would provide the best

tatistics. Ho we ver, we are limited by tw o f actors. For one, making
he chunks too small leads to an inaccurate ˆ C FG and incomplete
leaning of the foregrounds. We also found that using small chunks
lso leads to inaccuracies in C H I . Ho we ver, this is not a fundamental
ssue and would be fixed by simply using more mock maps in our
stimates. Trying to keep our models accurate is what moti v ated our
hoices for the number of chunks for scales up through j = 6. For
cales j = 7 and 8, we used 96 chunks as this was the largest value
or which our computer was able to compute eigenvectors. 

In practice, an analyst using NKL would probably decide on a
hunking scheme by trial and error using simulations. Ho we ver, it
ay be worth providing some intuition on how these parameters
ay depend on the surv e y in question. We should emphasize here

hat this intuition is really guess work. More precise characterization
ill need to be determined by trying out NKL in different scenarios.
Suppose one decreased the resolution of one’s instrument. This

ould lead to the angular power spectra like those shown in Fig. 4
ropping off more quickly as a function of � . For adequately large
i.e. small j ) needlet scales, the coefficients would not change much
nd our approach would stay more or less the same. For smaller
eedlet scales, noise contamination would become more severe and
ne may find that larger chunks are required to control errors in ˆ C FG 

ue to noise leakage. 
Now, suppose that one decreased the surv e y area. Naturally, one

ould mask out adequately small needlet coefficients and decrease
he number of chunks accordingly. It is possible that one could
ecrease the size of chunks used, as the small and hard to model
orrelations of distant chunks is now gone. However, this could still
ose problems as we expect the anticorrelation between residual
oregrounds and signal to scale like 1/ N p . 

In the case of an especially small surv e y area, one may also find
hat there are not enough non-zero coefficients to adequately estimate
ˆ 
 FG at lower values of j and in the scaling function. In such a case,
ne would likely have to increase either the minimum value of j or the
alue B , increasing the number of coefficients per map but providing
 coarser partitioning of � -space. 

We found for this high- z case that approximating the foregrounds
ith DAYENU w ork ed better than with PCA. We believe DAYENU’s

uperior performance in this scenario is likely due to the fact that it
reats each pixel in the needlet map individually. On the other hand,
CA giv es each pix el the same treatment. This fine-grained approach

s useful at higher redshifts where foreground chromaticity varies
uite significantly with line of sight. 
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Figure 5. Power spectra estimated from the cleaned high-redshift maps. The 
‘H I + noise’ curve shows the power spectrum of the masked, beam-convolved 
maps. NKL was tested on a second realization of signal plus noise, producing 
similar results. 
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Figure 6. Power spectrum estimates which have been debiased. The ‘H I ’ 
curv e pro vides the power spectrum of the H I maps after beam convolution 
and masking. 
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For the DAYENU foreground approximation, we chose the SVD 

ut-off to be a factor of 10 −14 below the largest singular value of
 

� . This value ensured that all foregrounds were captured in the
pproximation. 

The MGNILC cleaning was performed using needlet neighbour- 
oods of size 1500 coefficients. MGNILC was also performed using 
he same foreground approximation as for NKL. 

For all blind methods, 78 components were used to model the 
oregrounds. This value was selected by AIC. 

In Fig. 5 , we present the 3D power spectra reco v ered by the
ethods described abo v e using equation ( 41 ). One may note that

hese results look more pessimistic than what is seen in other papers
n this topic. This is because we are including polarized foregrounds 
t a higher redshift, which is uncommon. Moreo v er, most of the
ky is kept, including areas with relatively bright foregrounds. One 
ill also notice that all methods tested behaved similarly at small

patial scales ( k � 0 . 6 hMpc −1 ). One exception to this is the NKL
urve, which is lower than the others at such scales. This is due
o the fact that NKL is the only method tested here that makes a
istinction between H I and noise. These small scales carry noise 
omparable to or greater than the H I signal. As such, NKL looks
ifferent than the other methods in this regime. It should be noted
hat this feature goes away when we set C S = C H I + C N . This feature
s also not a problem, as the debiased data will show that the H I is
till well preserved by NKL at these small scales. At larger spatial
cales, there is a clear bifurcation between the blind and non-blind 
ethods. The blind methods clean extremely aggressively at such 

cales, leaving residuals up to 5 orders of magnitude below the signal
lus noise power spectrum. This makes sense, as these large scales 
ill correspond to the foreground-dominated delays such as those 

een in Fig. 3 . There is also a notable trough for certain techniques
elow k ≈ 0 . 20 hMpc −1 . These scales should correspond roughly to
he regime in delay space shown in Fig. 3 where the foregrounds
nd H I plus noise are approaching the same magnitude. On the
ther hand, the non-blind methods seem to be able to preserve some
nformation from within this foreground-dominated region of delay 
pace, having residuals several orders of magnitude closer to that of
he true signal plus noise power spectrum. Moreo v er, NKL seems
o provide roughly a factor of 10–50 impro v ement o v er GNILC at
hese larger scales. Ho we ver, it should be noted that all methods
ncur significant signal loss at the large spatial scales. Even NKL is
 factor of a fe w belo w the desired level. This is perhaps something
hat could be compensated for through the use of a transfer function,
ut we leave such an analysis to future work. 

In Fig. 6 , we present power spectrum curves which have been
ebiased to remo v e the noise. The power spectra are debiased
ccording to the equation 

ˆ 
 debiased ( k) = 

ˆ P ( k) − ˆ P N ( k) . (42) 

n this formula, ˆ P ( k) is the power spectrum estimate obtained from
he cleaned maps and ˆ P N ( k) is an estimate of the noise power
pectrum obtained from our model of the noise. Note that NKL was
ebiased slightly differently, with the noise model used being one 
aking into account the effects of the KL transform on the noise. There
re a few features in this plot worth noting. First, it should be noted
hat the debiased power spectra for GNILC, ICA, GMCA, and PCA
ecome ne gativ e at lo wer k -v alues. This is due to the loss in both the
ignal and noise incurred at large scales by these methods, combined
ith the fact that the noise power spectrum estimate ˆ P N does not

ccount for this loss. It should be noted that these power spectrum
alues would likely not become ne gativ e had we accounted for this
oss. Ho we ver, e ven with a more sophisticated debiasing, one would
till find these methods being outperformed by MGNILC and NKL. 
he MGNILC power spectrum estimate never becomes negative. 
his is because it suffers from less signal loss than the previously
entioned methods. NKL was debiased somewhat differently than 

he other methods, with the noise power spectrum being estimated 
rom maps cleaned with NKL. It was found that NKL increased
he power of the noise at large length-scales k � 0 . 35 hMpc −1 , and
ecreased the noise power at scales k � 0 . 35 hMpc −1 . The use of
 modified noise power spectrum resolved these issues in the case
f NKL. Moreo v er, GNILC seems to underestimate the H I power
pectrum at higher values of k . This is due to the ILC bias described
n Delabrouille et al. ( 2009 ). 

In Fig. 7 , we present graphs illustrating the ratio of | S l , H I | to
 S l , cd | as a function of k . The variable S l , H I represents the spherical
armonic power spectrum of the H I plus noise. On the other hand,
 l , cd represents the spherical harmonic power spectrum obtained 
rom cleaned maps. Note that we also debias S l , cd . In this figure,
ne will notice that there are common features between techniques. 
irst, one will notice larger values of log 10 ( | S l, HI 

S l, cd 
| ) in the top left

orner of each plot. This region corresponds to large angular scales
nd low delays. Since such modes carry the most severe foreground
MNRAS 527, 8382–8401 (2024) 
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Figure 7. The log-scaled absolute value ratio of the true high- z spherical harmonic power spectrum ( S l , H I ) o v er the spectrum reco v ered by cleaning and 
debiasing ( S l , cd ). 
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ontamination, one will find them being cleaned most aggressively.
his effect is most severe for PCA and least severe for NKL. Next,
ne will notice the plots becoming darker at higher � . This is due
o the fact that the beam convolution applied causes the noise to
 v erpower the H I at small angular scales. The strength of the noise
elative to the H I at these scales leads to inaccuracy in the debiasing
rocess. Overall, it appears that NKL has the lowest errors at large
patial scales, as expected from Fig. 5 . 

It is also important to consider residual foregrounds and any bias
hat these residuals may add to the estimated the H I signal. We will
nv estigate these fore ground residuals for GNILC, MGNILC, NKL,
nd PCA. Each of these methods cleans the data by first producing
 matrix (or matrices) used for cleaning, followed by application of
he matrix (matrices) to the data. For instance, when using PCA,
ne generates a cleaning matrix R from a covariance estimate of the
ata, then cleans the data as d cleaned = R ( d − d ). In order to produce
oreground residual estimates, we apply these cleaning matrices to
ata containing only foregrounds. So, for instance, the foreground
esiduals for PCA will be 

 residual = R ( f − f ) . (43) 

 similar approach can be taken to obtain the foreground residuals
or GNILC, MGNILC, and NKL. We also produce an estimate of
he H I plus noise present in the cleaned maps in a similar way. In the
ase of PCA, we would have 

 h + n ) cleaned = R (( h − h ) + ( n − n )) . (44) 

ig. 8 illustrates the effect that these foreground residuals have
n the resulting power spectra. First, notice that the dotted lines,
epresenting the power spectra of the signal plus noise present in the
lean maps, tend to be higher than the power spectra of the cleaned
aps for the NKL, GNILC, and MGNILC cases. This is indicative

f the presence of a ne gativ e bias in all three techniques. Moreo v er,
his feature implies that the ne gativ e bias present in these techniques
ecreases the power spectrum estimates, worsening agreement with
he true H I power spectrum. The ne gativ e bias seen in GNILC and

GNILC is predicted by the ILC bias described in Delabrouille
t al. ( 2009 ). The ne gativ e bias in NKL was of course predicted in
he analysis performed in Section 3.5 . 

We also explicitly tested equation ( 27 ) on the results of NKL at
eedlet scale j = 4. In this case, we have N p = 1024. The results of
NRAS 527, 8382–8401 (2024) 
his are shown in Fig. 9 . For this figure, we estimate E[ F 

′ 
i H 

′ 
i ] by

veraging the KL coefficients across all columns of h and f . So, we
ave 

ˆ 
 [ F 

′ 
i H 

′ 
i ] = 

1 

N p 

(
φ′ T 

i h 

) (
f T φ′ 

i 

)
. (45) 

ince we are less interested in foreground-dominated modes, we
nly present results up to λ = 2 for clarity. In this plot, one can
ee that equation ( 27 ) underestimates the severity of the bias, but is
ble to roughly capture what is happening. In particular, it predicts
hat the bias is ne gativ e and that it becomes more ne gativ e as it one
pproaches λ′ = 1, the eigenvalue at which the foregrounds and
ignal plus noise are expected to have equal variance. 

Another aspect of equation ( 27 ) to consider is the claim that
[ H 

′ 
i F 

′ 
k ] = 0 for i �= k . We present a test of this in Fig. 10 . In this

gure, the curve shows estimated values of E[ H 

′ 
i F 

′ 
k ] for λ′ 

i = 0 . 15.
e see that this correlation does not strictly come out to be 0 as

redicted by equation ( 27 ). Rather, it seems to oscillate about 0, with
 correlation being outside the error bars of many eigenvalues. In
his case, the average of these off-diagonal terms (up to λ′ = 0.25)
as slightly ne gativ e (order 10 −3 and within a standard deviation of
. This is much smaller than the diagonal terms E[ H 

′ 
i H 

′ 
i ], which are

f order 1. As such, these off-diagonal terms will increase errors in
he power spectrum estimates, but will not contribute much of a net
ias. 

.5 Test at lower redshifts 

n this subsection, we test these same foreground removal methods
t lower redshifts than in Section 5.4 . In particular, we used 256
v enly spaced frequenc y channels from 980 up to 1080 MHz.
his test was moti v ated by the fact that the characteristics of the

oregrounds change with redshift. In particular, models predict that
olarized foregrounds ought to be less severe in this regime. Note
hat we have again chosen to mask the brightest 15 per cent of
ixels. 
In Fig. 11 , we present the angular power spectra estimated at the

030 MHz frequency channel. In this case, for the convolved maps,
he H I has a much stronger contribution to the maps than the noise
or scales up to � ≈ 200. Although not as severe as in the higher
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Figure 8. Power spectra illustrating the effects of foreground residuals in the high-redshift case. Solid lines correspond to the power spectra of the cleaned 
maps. Dashed lines correspond to spectra obtained from foreground residuals. Dotted lines correspond to the power spectrum of the H I plus noise present in the 
cleaned maps. 

Figure 9. A test of equation ( 27 ), which modelled the ne gativ e bias incurred 
by NKL, performed on the j = 4 needlet scale. 
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edshift case, the angular resolution of the antenna beams have once 
gain caused significant signal loss at the smaller angular scales. 

For the blind methods, we tried to use AIC to estimate the optimal
umber of modes to remo v e. In particular, AIC predicted four modes
s the best option. Ho we ver, preliminary checks using the radial
ower spectrum estimation code from Carucci 2 showed a large spike 
n the radial power spectrum at low k ν . This spike disappeared when
he number of modes was increased to 5, resulting in better agreement 
etween the radial power spectra of the H I plus noise and the cleaned
 https:// github.com/ isab3lla/ gmca4im 

o  

d  

u  
aps. As a result, we chose to remo v e fiv e modes for all blind
ethods in this test case. 
As for GNILC, NKL, and MGNILC, we once again used the

eedlet domain scheme described in Table 2 . In this case, we again
nly compute needlets for modes up to � = 255, as the beams used in
his regime have widths θ ≈ 1 ◦. GNILC was performed in the same
ay as in Section 5.4 , where we sought to use windows of size 10 5 

oefficients. For MGNILC and GNILC, we used neighbourhoods of 
ize 3000 coefficients as AIC struggled to select the correct number
f modes when using neighbourhoods of size 1500. For NKL, we
escribe the cleaning parameters in Table 4 . The number of chunks
sed has remained more or less the same as in Section 5.4 . We have
MNRAS 527, 8382–8401 (2024) 

https://github.com/isab3lla/gmca4im


8396 J. Podczerwinski and P. T. Timbie 

M

Figure 11. Angular power spectra estimated from unmasked maps using 
HEALPY at 1030 MHz . Solid lines correspond to maps that have undergone 
beam convolution. Dashed lines correspond to maps that have undergone no 
beam convolution. 

Table 4. A summary of the number of chunks and SNR values chosen for 
each scale in the low- z test. 

Scale Number of chunks SNR 

Scaling function 6 1 
j = 4 12 1 
j = 5 32 1 
j = 6 64 1 
j = 7 96 1 
j = 8 96 1 
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o we ver, increased the number of chunks for the scaling function and
he j = 4 scale. In addition, note that the same SNR is used for all
eedlet scales. For this particular test, we found that approximating
he foregrounds using the PCA approach was more ef fecti ve than
sing DAYENU. That is what we will present in this section. It seems
ikely that PCA provides an advantage over DAYENU in this scenario
or two reasons. For one, the foregrounds in this scenario were quite
arrow in delay space. The delay spectra of these foregrounds were
articularly narrow compared to those of the higher redshift test
ase. The fact that the foregrounds vary so rapidly at delays close
o 0 lead to our DAYENU-based scheme struggling to accurately
stimate the width of the foregrounds. In particular, this approach
as usually o v erestimating the width of the foregrounds in delay

pace. On the other hand, the fine-grained nature of the DAYENU-
ased approach was less important here than in the higher redshift
ase. This is due to the fact that foreground chromaticity did not vary
s much as function of the line of sight in the lower redshift test case.
t should be noted ho we ver, that AIC struggled with selecting the
orrect number of modes during the foreground approximation step.
e fixed this simply by choosing to remo v e m + 2 modes, where m
as the number of modes selected by AIC. It should also be noted

hat we chose C S = C H I + C N for this particular test case. This was
one since our computer program interpreted C H I as being singular,
reventing the KL transform from being performed. Tacking on C N 

as a convenient workaround since the noise is very small in this
est and the computations for the C S = C N + C H I test had already
een performed. 

In Fig. 12 , we present power spectra estimated from cleaned maps.
t should be noted that the noise is quite low in this test case. As
uch, the debiasing process of equation ( 42 ) makes an imperceptible
NRAS 527, 8382–8401 (2024) 
ifference. Because of this, we only present the debiased results.
ote that all methods in this figure were debiased using the same
oise power spectrum estimate ˆ P N ( k). In this figure, one will notice
rst that GMCA and PCA produce essentially identical results, and

hat they seem to provide the best match to the H I plus noise power
pectrum. Ho we ver, this is somewhat misleading, as the foreground
esiduals at low k roughly match the H I plus noise power spectrum.
his is made clear in Fig. 13 , where one can see that the power
pectrum at these scales is mostly due to foreground residuals. The
NILC and MGNILC power spectra also receive a boost from their

oreground residuals, but the effect is not as dramatic as in the case
f GMCA and PCA. It also appears that the ILC bias in this case is
ot as severe as in the higher redshift case. This is likely due to the
act that the larger neighbourhoods of needlet space were used. As in
he higher redshift test case, we find that the presence of foreground
esiduals decreases the NKL power spectrum at low k . However, the
ffect on NKL is smaller in this case compared to the one at higher
edshift. 

Interestingly, ICA has performed differently from GMCA and
CA in this context. It appears that ICA has smaller foreground
esiduals than either GMCA or PCA in this case. Next, one will
otice that ICA, MGNILC, GNILC, and NKL give very similar
esults down to k ≈ 0 . 15 hMpc −1 . For k < 0 . 15 hMpc −1 , the non-
lind methods once again provide significantly impro v ed results.
or scales 0 . 03 hMpc −1 < k < 0 . 15 hMpc −1 , we find that NKL,
GNILC, and GNILC provide similar results. At the very lowest

cale ( k < 0 . 03 hMpc −1 ), we find NKL provides a factor of a few
mpro v ement o v er GNILC and MGNILC. 

Consider again Fig. 13 , which shows the foreground residuals
resent in this test case. As mentioned earlier, PCA and GMCA are
ominated by foregrounds at k -values less than about 0 . 2 hMpc −1 .
or the non-blind methods, we find that foreground residuals are
trongest at low values of k . This is expected, as such scales will be
ominated by contributions from low delays where foregrounds are
trongest. Ho we v er, fore ground residuals are not quite as severe as
n the higher redshift test case. 

In Fig. 14 , we show the spherical harmonic power spectra for
arious cleaning methods. This figure presents the same metric as
as presented in Fig. 7 . In this plot, notice first that PCA performs
oorly at low k for the lower � modes. At these values of � , the very
owest k modes were cleaned too aggressively, while the slightly
igher k modes were not cleaned enough, leaving behind significant
oreground residuals. PCA did not suffer from such under-cleaning
t the higher � modes, ho we v er. F or � � 200, MGNILC and NKL
ro vide v ery similar results, with both leaving behind significant
oreground residuals. This is due to the fact that PCA was used to
enerate the foreground approximation in this test case. When using
CA to generate the foreground approximation, AIC chose to include

oo few modes. As a result, not all of the foregrounds were included
n ˆ f . An y fore grounds not included in ˆ f will not be cleaned by NKL
r MGNILC, leading to the undercleaning observed here. At lower
 , ho we ver, it appears that NKL performs best, providing the least
ignal loss at the lowest k modes. 

.6 Performance of NKL gi v en modified H I priors 

ne source of concern with respect to non-blind methods is how their
erformance may change subject to systematic effects or modified
riors. We will leave systematics testing for future work. For now
e will test the performance of NKL subject to modified H I priors. 
In Shaw et al. ( 2015 ), it is mentioned that the CORA software

ackage, which was used for this paper, assumes the H I power



Needlet Karhunen–Lo ̀eve (NKL) 8397 

Figure 12. 3D power spectra computed for various techniques in the lower redshift case. The ‘H I ’ curve was estimated from maps that had undergone beam 

convolution and masking. We also tested NKL on a second realization of the signal plus noise, which produced similar results. 

Figure 13. Power spectra illustrating the effects of residual foregrounds for various techniques in the low-redshift case. These curves are organized in the same 
manner as Fig. 8 . 
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pectrum in the flat sky limit is equal to 

 T b ( k , z, z ′ ) = T b ( z) T b ( z 
′ ) 

(
b + f μ2 

)2 
D + 

( z) D + 

( z ′ ) P m 

( k) . (46) 

In this formula, T b is proportional to the H I abundance 
H I ( z)
nd b ( z) is the H I bias. 
Although modelling and measurement work has been done, the 
alues of these parameters remain uncertain, particularly at higher 
edshifts. For the past tw o decades, much w ork has been done
o derive estimates of 
H I from measurements. Fig. 14 of Hu 
t al. ( 2020 ) conv eniently pro vides a summary of 
H I ( z) estimates
ut to z = 5. This figure shows increasing error bars and even
MNRAS 527, 8382–8401 (2024) 
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Figure 14. The ratio of the true spherical harmonic power spectrum ( S l , H I ) to the spectrum reco v ered by cleaning and debiasing ( S l , cd ) for the low- z test. 
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Figure 15. A summary of NKL performance subject to modified priors in 
the higher redshift scenario. The curves shown here should be interpreted in 
the same as Fig. 8 . 

Figure 16. Debiased NKL power spectra in the high-redshift test case, 
subject to modified priors. 
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isagreement between measurements as redshift increases. This
ecomes particularly severe for z � 4. 
When searching in the literature for information about the hy-

rogen bias, one will typically find constraints coming from cross-
orrelation studies. These cross-correlation studies will present esti-
ates of the product 
H I br H I , where r H I is a correlation coefficient.
s a result, most of the information one finds in the literature about
 by itself comes from modelling work. The model described in
astorina & Villaescusa-Navarro ( 2017 ) was presented at redshifts
.8 < z < 5 and showed significant uncertainties. Possible values
f b ( z) spanned o v er a factor of ≈2 at any given redshift. This
odel ho we ver, did predict a smoothly increasing b ( z) as a function

f redshift. As a simple way to test the effect of errors in the H I

rior, we repeated NKL subject to modified H I priors. In particular,
KL was performed on the same maps as before, but provided with
odified estimates of the H I covariance matrices. In these test cases,
e vary both the bias b and the abundance 
H I assumed by the
rior. In particular, we scale 
H I by a constant factor and change
he bias from a constant to a linear function. The coefficients of this
inear curve are chosen to ensure b ( z min ) = 1 and b ( z max ) = 2. To
ummarize, we modify the priors in three different ways: 

(i) 
H I → 
H I /2 and b ( z) = 1 → b ( z) = az + c 
(ii) 
H I → 2 
H I and b ( z) = 1 → b ( z) = az + c 
(iii) 
H I → 
H I /2. 

These robustness tests were performed both in the higher redshift
cenario and the lower redshift scenario. The coefficients chosen for
he bias were adjusted in each case to ensure that the bias varied from
 to 2 o v er the redshift range. 
In Fig. 15 , we present results from the robustness check at higher

edshifts. As can be seen, NKL is fairly robust to errors in the prior
n this scenario. All priors hav e pro vided roughly similar levels of
oreground residuals. One will also notice that the 
H I /2 curves are
ower and the 2 
H I curve is higher. The difference in these two
urvesis due to the fact that the KL step of NKL chooses the number
f modes to discard based on the expected signal to ratio. This SNR
stimate is of course dependent upon the assumed H I amplitude.
t should also be noted here that the two 
H I /2 curves look quite
imilar. This would imply that errors in the bias prior did not make
uch of a difference in this case. 
In Fig. 16 , we present debiased power spectra for the high-redshift

est case. As one could predict from Fig. 15 , we see that the 2 
H I 
NRAS 527, 8382–8401 (2024) 
rovides roughly similar performance to the correct prior case upon
ebiasing. On the other hand, the cases with 
H I /2 suffer from some
dditional signal loss. 

In Fig. 17 , we present a summary of results with varied priors in
he low- z case. As in the higher redshift scenario, decreasing 
H I 
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Figure 17. A summary of NKL performance subject to modified priors in 
the lower redshift scenario. The curves shown here should be interpreted in 
the same way as Fig. 8 . 

Figure 18. Debiased NKL power spectra in the lower redshift test case, 
subject to modified priors. 
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ithout adjusting the bias leads to roughly similar results. Ho we ver,
djusting the bias seems to have more of an impact, with both the
H I /2 and 2 
H I test cases showing larger power spectrum values at 

ow k compared to the case with correct priors. Further testing found
hat NKL discarded the same number of modes in both the correct
rior and 
H I /2 with linear bias test cases. This would imply that
he performance difference between the 
H I /2 and 2 
H I curves of 
ig. 17 is due to differences in the eigenmodes generated for the
L transform, rather than NKL discarding fewer modes due to the 

hange in prior. 
In Fig. 18 , we present debiased power spectra for the lower

edshift scenario. In this figure, one sees that decreasing 
H I without 
djusting the bias leads to similar results, with the cleaning being 
onducted slightly more aggressively. The test cases with modified 
ias assumptions oddly lead to better agreement, with some o v er
stimation at the lowest values of k in the 2 
H I case. 

 DISCUSSION  A N D  C O N C L U S I O N  

n this paper, we introduced the NKL and MGNILC techniques 
or cleaning foregrounds from H I IMs. Moreover we tested these 
ethods, and various others, on full sky maps in two different bands
f observations ([980 MHz , 1080 MHz ] and [400 MHz , 500 MHz ]).
hese tests were conducted assuming a hypothetical telescope similar 

o MeerKAT operating in single-dish mode. Instrumental effects were 
odelled simply, with noise being drawn from a Gaussian distribu- 

ion and beam effects modelled by convolution with Gaussians of 
requenc y-dependent width. Moreo v er, we assumed full sk y co v erage
nd masked out the brightest 15 per cent of pixels. 

At higher redshifts, where foregrounds are more severe, we found 
hat non-blind methods such as GNILC and NKL outperform blind 

ethods by several orders of magnitude at large spatial scales. 
o we ver, all methods suf fered significant signal loss. The most

ccurate method was NKL, which was still off by an order of
agnitude in the higher redshift test and a factor of 2 or 3 in the lower

edshift case. It may be possible to compensate for such signal loss
sing a transfer function method. For instance, the work presented 
n Cunnington et al. ( 2023 ) seems to show promising results when
ignal loss is at the 50 per cent level. 

We also tested the robustness of NKL against modified priors. 
e found that the performance of NKL remains fairly stable while

arying 
H I and the bias b . It was found that varying 
H I changed
o w aggressi vely NKL cleaned, while varying the bias lead to
ifferent behaviour at low k in the lower redshift scenario. However, 
ven when provided with modified priors, NKL still provided better 
erformance at large length-scales than the other map-space cleaning 
ethods described in this paper. 
We must emphasize that these tests do not tell the entire story

f foreground removal. For instance, convolution with a Gaus- 
ian beam is not quite realistic. A more realistic beam would be
ore complicated than this, including sidelobes and asymmetries. 
oreo v er, a realistic map-making process is not so simple as just

onvolving with a beam. One has to perform some sort of maximum-
ikelihood estimate based on the raw data coming from the antennas.
uch a process may lead to map-making artefacts that are not so
asily described. In addition, one must also consider inevitable 
mperfections in beam calibration. Such imperfections would likely 
rovide their own artefacts and possibly add additional chromaticity 
o the foregrounds. We plan to address these issues in future work. 

F or perspectiv e, we w ould lik e to recall the visibility-based w ork
resented in Shaw et al. ( 2015 ). In that paper, polarized foregrounds
ere remo v ed by projecting the visibilities onto the null space of the
olarized beam matrix. A KL transform was then used to clean
he unpolarized foregrounds from the visibilities. That approach 
eco v ered the H I signal ef fecti vely do wn to k ≈ 0 . 02 hMpc −1 for
 simplified version of the CHIME telescope operating between 
00 and 500 MHz. One conclusion, ho we ver, was that the main
eamwidths needed to be understood to an accuracy of 0 . 1 per cent
or this method to work. 

In this paper, our moti v ation for further investigation of map-
ased techniques was that they may be more robust to beam mis-
alibration than are visibility-based methods. For instance, Shaw’s 
ethods would not work in a situation where beamwidth errors are

t the 1 per cent level. This leads to an incorrect model of C FG ,
reventing the KL transform from being ef fecti ve. We mention C FG 

n specific because it is more sensitive to errors than C H I . Having
 per cent errors in C FG can be hazardous when dealing with such
 large dynamic range as in H I IM. Ho we ver, NKL and MGNILC
stimate C FG directly from the data, hopefully providing it with some
obustness against calibration issues. 

As a next step, we intend to use the driftscan package, which
mploys the m-mode formalism of Shaw et al. ( 2015 ), to produce
ore realistic maps. This approach creates visibilities from a beam 
MNRAS 527, 8382–8401 (2024) 
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odel. We can then use a modified version of the package to generate
iener-filtered maps from these visibilities. We will then introduce

eamwidth errors to test how robust these methods are. We also intend
o introduce a method similar to NKL which acts in the visibility
omain. Such a method may be robust to errors in the beamwidths,
s the fore ground co variance would be estimated from the data and
ot from a beam model. 
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PPENDI X  A :  DETA I LS  O F  T H E  E R RO R  

NALYSI S  

n this appendix, we provide deri v ations of the expressions provided
n Section 3.5 . We derive the formulae in this subsection using first
rder perturbation theory. To begin, let us consider the generalized
igenvalue problem at hand. It turns out that equation ( 23 ) can be
assaged into 

 

−1 / 2 
S 

ˆ C FG C 

−1 / 2 
S φ′′ 

i = λi φ
′′ 
i . (A1) 

n this formula, φ′′ 
i = C 

1 / 2 
S φ′ 

i and C 

1 / 2 
S is the Hermitian square root

f C S . Note that this is the same as the equation we would get had we
et up the generalized eigenvalue equation using variables whitened
ith C 

−1 / 2 
S . 

It turns out that the math involved in this problem is easier when
hitened variables are used. As such, any symbols used during the

est of this deri v ation will be used to represent whitened variables. So,
or instance, f p will refer to row p of C 

−1 / 2 
S f . Moreo v er, φ′ 

i will refer
o the whitened eigenvector φ′′ 

i . This will not change our results,
ince it can be easily shown that E[ F 

′ 
i H 

′ 
k ] does not change upon

hitening of the variables. 
To first order, the perturbed eigenvector φ′ 

i will look like 

′ 
i = φi + 

∑ 

j �= i 

φT 
j �φi 

λi − λj 

φj . (A2) 

n this formula, 

 = � FG + C h ′ h ′ + C f h ′ + C n ′ h ′ + C n ′ n ′ + C f n ′ . (A3) 
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efer to Section 3.5 for definitions of the terms on the right of
quation ( A3 ). Let us now consider the correlation between residual
oregrounds and H I . We will find that 

[ F 

′ 
i H 

′ 
k ] = E[( φi + �φi ) 

T f p h 

T 
p ( φk + �φk )] . (A4) 

efer to Section 3.5 for definitions of F 

′ 
i and H 

′ 
i . Note also that a p 

efers to column p of matrix a . This expectation value ought to be
qual to 0 in the unperturbed case. We will also discard the second-
rder term, giving 

 [ �φT 
i f p h 

T 
p φk ] + E [ φT 

i f p h 

T 
p �φk ] . (A5) 

ecall that �φx really consists of several contributions 

φx = ∑ 

j �= x 

φT 
j ( � FG + C h ′ h ′ + C f h ′ + C n ′ h ′ + C n ′ n ′ + C f n ′ ) φx 

λx − λj 

φj . 

(A6) 

he term involving � FG will not contribute to E[ F 

′ 
k H 

′ 
i ] as it will

onsist of the expectation of products of three terms depending on 
he foregrounds and one term depending on the H I . Since the H I and
oregrounds are uncorrelated, this should result in an expectation 
alue of 0. Similar arguments can be made for C h ′ h ′ , C n ′ h ′ , C n ′ n ′ , and
 f n ′ , which will each involve odd degrees of foregrounds, noise or
 I , resulting in 0 (or at least small) expectation. Small expectation is
entioned since terms like h 

′ 
p and f p will be correlated in principle,

ince h 

′ 
p does depend on the foregrounds. Ho we ver, we will assume

hat such correlation are small. 
It will be the case ho we ver, that C f h ′ will create a non-negligible

orrelation between the foreground residuals and H I . We will have 

[ F 

′ 
i H 

′ 
k ] = 

∑ 

j �= i 

1 

λi − λj 

( E [ φT 
j C f h ′ φi φ

T 
j f p h 

T 
p φk ] 

+ 

∑ 

j �= k 

1 

λk − λj 

E [ φT 
i f p h 

T 
p φj φ

T 
j C f h ′ φk ]) . (A7) 

et us start by considering the first term of the right side of equation
 A7 ). Applying the definition of C f h ′ , we obtain ∑ 

j �= i 

1 

λi − λj 

∑ 

q 

1 

N p 

E 

[
φT 

j 

(
h 

′ 
q f 

T 
q + f q h 

′ T 
q 

)
φi φ

T 
j f p h 

T 
p φk 

]
. (A8) 

or first term of equation ( A8 ), we will have 

 j �= i 

1 

λi − λj 

� q 

1 

N p 

E 

[
φT 

j h 

′ 
q f 

T 
q φi φ

T 
j f p h 

T 
p φk 

]
. (A9) 

et us now assume that h ′ and f are uncorrelated. This assumption
s not strictly true, as the filter used to generate h ′ will be a function
f the foregrounds. Ho we ver, we found in numerical tests that
orrelations between h ′ and f were small. So, this approximation 
s safe to make. Next, we re-arrange terms inside the expectation 
alue and using our recent assumption, we can express equation 
 A9 ) as ∑ 

j �= i 

1 

λi − λj 

∑ 

q 

1 

N p 

E 

[
φT 

j h 

′ 
q h 

T 
p φk 

]
E 

[
φT 

i f q f 
T 
p φj 

]
. (A10) 

ext, note that the rapid angular variation of the signal implies that
erms of in the sum of equation ( A10 ) will be suppressed when q
2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 http://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and repr
iffers from p . As such, we will approximate equation ( A10 ) as 

 j �= i 
1 

λi − λj 

1 

N p 

E 
[
φT 

j h 
′ 
p h 

T 
p φk 

]
E 

[
φT 

i f p f 
T 
p φj 

]
. (A11) 

ssuming that E[ f p f T p ] varies little as a function of p , then we can
ay E [ φT 

i f p f 
T 
p φj ] ≈ 0. This assumption should be a good one when

hunk sizes are small enough that the foreground temperature varies 
ittle within each chunk. On other hand, consider the case where
ne has a single chunk co v ering the whole map. In this case, the
olumns of f will correspond to individual lines of sight. In such a
ase, E[ f p f T p ] will vary significantly with p and our assumption is
o longer valid. 
Thus, we find that the first term on the right side of equation

 A8 ) is approximately 0, as long as the chunk sizes are chosen to be
dequately small. As for the second term of equation ( A8 ), we can
o some rearranging and apply our previous assumptions to say that ∑ 

j �= i 

1 

λi − λj 

∑ 

q 

1 

N p 

E 

[
φT 

j f q h 

′ T 
q φi φ

T 
j f p h 

T 
p φk 

]

≈ 1 

N p 

� j �= i 

1 

λi − λj 

E 

[
φT 

j f p f 
T 
p φj ] E [ φT 

i h 

′ 
p h 

T 
p φk 

]
. (A12) 

et us define the matrix αik = E [ φT 
i h 

′ 
p h 

T 
p φk ]. In a numerical test,

e found that αik roughly follows the relation 

ik ≈
{

0 λi < 1 
δik λi > 1 . 

(A13) 

his makes sense, as h 

′ 
p is just a version of h p that has been smoothed

sing some filter (either PCA or DAYENU). We know that modes
ith large λi will couple strongly to the foregrounds, and thus to the

mooth parts of h p . As such, it should be the case that 

 

[
φT 

i h p h 

T 
p φk 

] ≈ E 

[
φT 

i h p h 

T 
p φk 

] = δik , (A14) 

hen λi is large. On the other hand, for smaller λi , one would expect
hat the mode would couple most strongly to higher delay parts of
 p . Since h 

′ 
p has been smoothed, it should be the case that ∣∣E 

[
φT 

i h 

′ 
p h 

T 
p φk 

]∣∣ << 1 , (A15) 

or modes with small λi . Using this result, we obtain ∑ 

j �= i 

1 

λi − λj 

∑ 

q 

1 

N p 

E 

[
φT 

j f q h 

′ T 
q φi φ

T 
j f p h 

T 
p φi 

]

≈ δik 

N p 

∑ 

j �= i 

αii λj 

λi − λj 

. (A16) 

e can go through the same process for the other term involved in
quation ( A7 ). This results in 

δik 

N p 

� j �= i 

αjj λi 

λi − λj 

, (A17) 

here δik is a Kronecker delta function. Combining these two terms, 
e find 

[ F 

′ 
i H 

′ 
k ] ≈

δik 

N p 

� j �= i 

( αii λj + αjj λi ) 

λi − λj 

. (A18) 
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