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Abstract
Kinetic Inductance Detectors (KIDs) are an emerging technology useful for a wide 
variety of astronomy applications, including the Habitable Exoplanet Imaging Mis-
sion (HabEx), the Origins Space Telescope (OST), the Probe of Inflation and Cos-
mic Origins (PICO), and more. KIDs operate at cryogenic temperatures and can 
detect photons with high accuracy, sensitivity, and over a wide range of wavelengths. 
Though many KID models describe their performance well under certain operat-
ing conditions, some important pieces of physics related to quasiparticle dynamics 
are not yet either well understood or integrated into these models and can strongly 
affect device performance. In this paper we describe our framework for building an 
extended KID model, present the results of a quasiparticle diffusion simulation that 
incorporates scattering, cooling and diffusion, and discuss plans for the experimen-
tal testing of the model. We also discuss additional features to be added into future 
models that aim to capture a wide variety of potential scenarios encountered by 
researchers.
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1  Introduction

Kinetic Inductance Detectors (KIDs) were conceived of in 1999 by Zmuidzinas and 
Leduc, and by as soon as early 2000, measurements were performed on Nb/SiO/
Nb microstrip resonators to verify the feasibility of the concept. Since then, vari-
ous improvements in design and advances in physical understanding have occurred 
bringing the technology to a mature state where it is used in a wide variety of 
(astronomy) applications [1].

Peter Timbie, David Harrison, Robert McDermott, Thomas Stevenson, Eric Switzer and Carrie 
Volpert have contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10909-024-03179-x&domain=pdf


451

1 3

Journal of Low Temperature Physics (2024) 216:450–457	

The basic operation of a KID can be understood by a lumped-element circuit 
model with a variable inductor. A superconducting film contains resonant circuits 
which are coupled to a microwave readout line. These resonators have some length, 
intrinsic inductance, capacitance, kinetic inductance, and may be open or short cir-
cuited at different ends. Depending on these parameters, a resonant circuit can be 
given some equivalent lumped-element circuit representation which can be seen to 
have a resonant frequency [2].

A superconductor has superconducting Cooper pairs, or BCS pairs, along with 
(non-superconducting) quasiparticles. When a photon is incident on the film there 
is some probability that there will be an absorption which breaks a Cooper pair into 
two quasiparticles. In order to break a Cooper pair, the energy of the photon, h� , 
must exceed the binding energy per pair, 2Δ , where Δ is the gap energy of the super-
conductor. The change in the number of Cooper pairs or quasiparticles changes the 
kinetic inductance of the resonator, and thus changes the frequency and width of the 
resonance, allowing the incident photon energy or power to be inferred [2].

Going beyond the lumped-element model, though, introduces complications. 
Quasiparticles can be distributed throughout a resonator at different spatial locations 
and with different energies. Can we predict the time-varying creation, dissipation, 
location, and energy of the quasiparticles in a resonator? Given a non-equilibrium 
time-varying energy-spatial distribution, how does this affect the observed resonator 
parameters? How do more complicated processes like quasiparticle trapping, pho-
non trapping, two-level-system (TLS) dynamics, and more, affect this time evolu-
tion? We hope to answer some of these questions by developing useful simulations 
that can be used by researchers to predict KID device performance in a wide variety 
of situations. In this paper, we present some preliminary results of such simulations, 
as well as the plans to test and further refine and extend the scope of the model.

2 � QP Diffusion, Cooling and Scattering in 1D

We first consider diffusion, quasiparticle-phonon scattering, and quasiparticle-qua-
siparticle recombination (cooling) in a 1D strip. The 1D diffusion equation with a 
non-spatially-varying diffusion coefficient is:

where u(x, t) is the concentration of the species and D is the diffusion coefficient [3]. 
Quasiparticles with different energies have different diffusion coefficients. So letting 
D0 be the high-energy limit for the diffusion coefficient yields the following energy-
dependent diffusion coefficient at an energy E:
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where Δ is the superconducting gap energy [4]. Meanwhile, the lifetime for a qua-
siparticle at energy � to scatter to an energy �′ by emitting or absorbing a phonon of 
energy � − �� is given by

and the lifetime of a quasiparticle state with energy � to recombine with another qua-
siparticle of any energy �′ is given by

Here �0s and �0r are the characteristic electron–phonon coupling times, k is the 
Boltzmann constant, Tc is the critical temperature of the superconductor, f(E) 
is the occupation probability at energy E,   �(E) = E∕

√
E2 − Δ2 is the normal-

ized density of quasiparticle states, Tp is the temperature of the phonons, and 
Np(E) = 1∕| exp(−E∕kTp) − 1| is the thermal equilibrium phonon occupation factor 
at phonon temperature Tp [5]. Note that Np(E) approaches the Heaviside step func-
tion as Tp → 0.

This expression for the density of states, �(E), is derived from BCS theory; however, 
Dynes has argued that the density of states may need to be broadened. This broadening 
is well approximated by

which just results from making the substitution E → E − i� into the original BCS 
density of states function �(E) [1].

2.1 � Numerical Simulation

2.1.1 � Diffusion

Using the above equations, we simulate the diffusion, cooling, and scattering of quasi-
particles in a 1D superconducting strip of length L from time t = 0 to t = T . To numeri-
cally simulate diffusion, the strip is broken into nx cells where the size of each cell is 
given by Δx = L

nx
, finite time steps are given by step size Δt = T

nt
, and ui is proportional 

to the total quasiparticle occupation in the ith cell. Then, we employ the finite volume 
method. The simplest discrete approximation to Eq. (1) is given by the explicit “for-
ward in time, central in space” (FTCS) method:
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The i index refers to the “i-th” location in space, and the j index refers to the “j-th” 
cell of time. Although the FTCS method is fast, it is only accurate to first-order, 
and it has the unfortunate numerical stability condition Δt ≤ 1

2

Δx2

D
 , meaning that a 

doubling of the spatial resolution Δx requires a simultaneous reduction in the time-
step Δt by a factor of four. Thus, simulating a long time T is unwieldy. One of the 
most popular methods, therefore, and the method we employ, is the Crank–Nicol-
son Method [3, 6]. This uses instead the average of the approximations at the points 
(xi, tj) and (xi, tj+1) ∶

Or, letting � = D
Δt

Δx2
 yields:

The Crank–Nicolson Method is unconditionally stable regardless of the value of �, 
and it is accurate to second order in both space and time. The cost of this is that each 
time step now requires a linear system of equations to be solved. However, given 
that the matrix involved is tridiagonal, there exist fast algorithms to solve this linear 
equation. We employ the Thomas algorithm (also known as the tridiagonal matrix 
algorithm) to do so.

2.1.2 � Scattering and Cooling

The quasiparticle lifetimes in Eqs. (3) and (4) are given by integrals over all the 
possible energy states for a quasiparticle (Δ,∞) . To numerically simulate this we 
choose some energy range (Δ,Emax) where Emax is sufficiently large and break 
energy space into cells where the size of each cell is given by Δ� = Emax

nE
 . Then 

Eqs. (3) and (4) take discrete forms:

Equivalently,

where the G matrices are the terms appearing in brackets:
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where ni ≡ (Δ�)�(�i)f (�i) [7] is the quasiparticle density in the i-th energy bin. We 
have assumed here a small occupation and so we replace 1 − f (��) → 1 in Eq. (3). 
Note that Np again just stands for the thermal equilibrium phonon occupation factor; 
p is not a parameter. The (discretized) equation for the time rate of change in ni is 
then

Note the factor of 2 here arises from the definition of the recombination rate. If the 
recombination rate is Γ, then the loss rate is 2Γ [8].

2.1.3 � Diffusion and Scattering/Cooling

Generic diffusion in one dimension has been described, and quasiparticle cooling 
and scattering have been described in energy space with 0 spatial dimensions. For-
mally speaking, the time evolution of the 1D system can be described by a master 
equation in position-energy space. Once discretized, each time step would update 
the position-energy distribution appropriately. Practically speaking, and for the pre-
sent purposes, we assume that the diffusion and energy scattering/cooling take place 
independently. That is, for each time step we simply first loop through every position 
bin and update the corresponding energy “vector” using the 0 dimensional model, 
and afterward we loop through each energy bin and update the corresponding spatial 
“vector” using the Crank-Nicolson scheme with the appropriate energy-dependent 
diffusion coefficient.

3 � Discussion

Figure  1 at the end of the document shows the results 
of such a simulation for an aluminum (Al) strip with 
L = 100 μm, �0s = �0r = 400 ns,D0 = 6 μm2∕ns,Δ = 1.7 × 10−4eV,Tc = 1.2 K,Tp = 0.1 K, 
and � = 0.001 Insulated boundary conditions are chosen, and quasiparticles are con-
stantly “injected” at the top end at a rate of r = 10−4∕(�m eV ns) and an injection 
energy of Einj = 1.9Δ.

Note in Fig. 1 the discontinuous line at the injection energy of 1.9Δ . Quasipar-
ticles at any energy E are most likely to scatter to energies close to the gap Δ , not 
to energies near the vicinity of E. Also note that there is very little scattering to 
energies greater than the injection energy 1.9Δ. The fact that this discontinuous line 
is clearly visible and diffuses faster than the quasiparticles near Δ shows that the 
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diffusion is in some sense happening faster than the scattering and recombination at 
that energy. A steady state is observed by 10 μs.

The results of this simulation will be tested by fabricating narrow strips of super-
conducting Al with lengths of 100 μm and 200 μm on a silicon wafer of thickness 
∼ 380 μ m. Coplanar waveguide (CPW) resonators with characteristic impedances Z0 
near 50Ω have been designed to resonate in the range between 5 GHz and 6 GHz. 
A given coplanar waveguide consists of a narrow, short ( ∼ 100 μm ) strip of Al con-
nected in series to a much longer quarter wave niobium (Nb) resonator. A Josephson 
Junction will inject quasiparticles at the end of the Al strip which is not in contact 
with the Nb. In order to confine the quasiparticles, Nb “guards” with a higher gap 

Fig. 1   Simulation Results for 1D strip of aluminum of length 100. Smaller time steps 
were used to enhance resolution for smaller simulation times. Quasiparticles are injected 
at the top (as seen in 1.0  ns) at an energy of 1.9Δ and diffuse downward. Parameters: 
L = 100 μm, �0s = �0r = 400 ns,D0 = 6 μm2∕ns,Δ = 1.7 × 10−4eV,Tc = 1.2 K,Tp = 0.1 K, and 
� = 0.001
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energy than Al of will extend out on all sides for 20 μm . To test the simulation in 
particular, we will look at how the resonant frequency, bandwidth, and roll-off-noise 
of the resonators change in response to changing quasiparticle density. The simplest 
“0-dimensional” test of this will be to compare the total number of quasiparticles 
to the predicted change in kinetic inductance of the resonators, but we also hope to 
capture any spatially dependent effects.

In general, the quasiparticle-phonon scattering depends on a phonon occupation 
function Np which, in the simulation, we have assumed to be an unchanging equi-
librium value for some phonon temperature Tp. However, non-equilibrium quasipar-
ticles when scattering and recombining will emit phonons, and this in turn should 
change Np (and make it no longer a thermal equilibrium function). In order to keep 
Np as unchanging as possible, the silicon wafer will be coated with titanium (Ti) 
throughout most of the ground plane. Ti has a lower gap energy than Al, so once a 
phonon has left the Al it will cool to the Ti gap energy and stay in the Ti. Eventually, 
we hope to update the simulation model to keep track of the phonon dynamics to 
generalize to a broader range of physical system.

Based on the results of such testing, we will further refine and add to the model to 
incorporate more complicated dynamics that have wide applicability. The simulation 
so far is simple in the sense that it has a constant injection rate of quasiparticles at 
one end which only diffuse, scatter, and recombine. But we aim to capture the qua-
siparticles dynamics in a wide variety of 2D structures more generally, and we also 
aim to understand the specific mechanisms for quasiparticle creation in KIDs which 
will be used for astronomical surveys.

Data Availability  Please email sormseth@wisc.edu for access to Jupyter Notebook simulation and layout 
to chip design.
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